DIGITAL COMMUNICATION LAB

OBJECTIVES:

* To study the signal sampling by determining the sampling rates for baseband signals and reconstruct the signal.
* To study various modulation and demodulation process.
* To study the various steps involved in generating and degenerating different pulse modulation techniques.
* To study various modulation techniques using simulation process (MATLAB).
* To study the generation and demodulation of PSK, DPSK, FSK.

OUTCOMES:

* Study and comprehend the basics of Communication system and different Digital Modulation Systems.
* Analyze the operation of each device in various types of modulation systems.
* Design and conduct experiments of different Digital modulation systems, in order to interpret the results.
* Demonstrate the skill to use modern engineering tools like CAD tools.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1		2	1											1	
CO2	3	3	2	1	1				1	2				2	
CO3	1	3	3	2	1	1			2	1		2	3	1	
CO4		2	2	1	3				2	1	1	2		1	3

Minimum of 8 experiments to be conducted (Four from each Part-A\&B)

PART-A

1. Sampling Theorem - verification.
2. Time division multiplexing.
3. Pulse code modulation.
4. Differential pulse code modulation.
5. Delta modulation.
6. Frequency shift keying.
7. Differential phase shift keying.
8. QPSK modulation and demodulation.

PART-B

Modeling of Digital Communications using MATLAB

1. Sampling Theorem - verification.
2. Pulse code modulation.
3. Differential pulse code modulation.
4. Delta modulation.
5. Frequency shift keying.
6. Phase shift keying.
7. Differential phase shift keying.
8. QPSK modulation and demodulation.
9. Channel and its characteristics.

Equipment required for Laboratories:

1. RPS - $0-30 \mathrm{~V}$
2. CRO - $0-20 \mathrm{M} \mathrm{Hz}$.
3. Function Generators $\quad-\quad 0-1 \mathrm{M} \mathrm{Hz}$
4. RF Generators - $0-1000 \mathrm{M} \mathrm{Hz} . / 0-100 \mathrm{M} \mathrm{Hz}$.
5. Multimeters
6. Lab Experimental kits for Digital Communication
7. Components
8. Radio Receiver/TV Receiver Demo kits or Trainees.

R．G．M．COLLEGE OF ENGINEERING \＆TECHNOLOGY，NANDYAL－ 518501 DEPARTMENT OF ELDCTRONICS AND COMMUNICATION ENGINEERING

Periasy Dry	Section	－ 1	2	3
		$\begin{aligned} & 9.00 \mathrm{AM} \\ & \mathrm{To} \\ & 9.50 \mathrm{AM} \end{aligned}$	$9.50 \mathrm{AM}$ To 10．49 AM	$\begin{aligned} & 11.60 \mathrm{AM} \\ & \text { To } \\ & 11.50 \mathrm{AM} \end{aligned}$
MON	A	DC	TEVISTE	MWEOC
	D	DSPLab		
	B			
	C	MW\＆OC Labidc Lab		
tue	A	VL．SID	DSP	Mweoc
	D	DC	CORA	DSP
	8	MWkOC LabDC Lab		
	C	DDV	IEI／TSTE	DSP
	A	YLSED	COkA	MW：OC
WED	D	MW\＆OC	DDV	DSP
WED	B	DC	CORA	MWEOC
	C	VLSID	MW\＆OC	DSP
THU	A	MW\＆OC	CORA	DSP
	D	DSP	DC	VLSID
	B	MW／EOC Labid Lab		
	C	DSP	COU	COI
FRI	A	MWECOC	COEA	DC
	D	DDV	DSP	COEA
	B	DSP	COKA	VLSID
	C	MW EOC	DSP	COI
SAT	A	DSP Lab		
	D	VLSID	COEA	DC
	B	MWAOC	DDV	COU
	C	M	OCC Labl	Lab

Academic Year：2022－23

A－Section ：RB3130 C－Section ：RH3 2020		202	
		B－Section ：RB3910 D－Section ：REF3030	
4	5	6	7
11.50 AM	1.50 PM	2．40 PM	3.30 PM
To	To	To	To
12.40 PM	240 PM	3.30 PM	4.20 PM
DSP	DDV	VLSID	COI
CakA	M W／\＆OC Lab／DC Lab		
CasA	VLSID	COI	DC
VLSSD	DC	CORA	MWEOC
COEA	MW KDC Lablic Lab		
VLSID	DSP Lab		
MWEOC	DC	COREA	DDV
DC	VLSID	MW\＆OC	COEA
DDV	DSP	COI	DC
IEVISTE	MW\＆OC Lab／DC Lab		
DSP	VLSID	MW\＆OC	DSP
DC	DSP Lab		
DC	M WKOC Lab／DC Lab		
MW\＆OC	COEA	COU	COI
VLSID	COEA	DSP	LIE
CDEA	MW\＆OC	VLSID	L．IB
DSP	VLSID	DDV	COU
VLSID	MW\＆OC	DC	L．1日
DDV	DC	COH	MWWOC
CCAEA	DSP	DOV	DC
VLSID	DC	COEA	1.13
MW\＆OC	DSP	DDV	COI
VLSID	DSP	［E1／STE	DC
DDV	DC	VLSID	COK：A

Subject	Sectiont	Name of the Pasulty
DSP	A	STr．N．Nevaraia Kurriar
MWreoc	A	Mr．S．Kastrlusman
DL	A	STr．D．Raics Saty
VLSID	K	Smi．M．Maheswarl
PODEA	λ	Mar．S．V．रetan Kumar
DDV	λ	Mr．il wola Sostendea Karme
cor	A	Mr．Rain Seknr
DEPLE5	A	Mr．NTVIKPCSMESEVKHI
DCLSo	A	Mr．DRSISmCMPSMrsikM
MVEKOCLS	A	Mr．SNHDTr．15PEMMiss Cige
E．JSTE	A	Miss．NFSIMr．SAE
Councelliry	λ	MissN．Fouza Salthan
Sublect	Sectron	Name of कe Pasuly
D8P	C	Mr．K．Nageadre Kammr
PMuste	C	Mr．S．Kasalm Noor Bisina
bre	C	Mr．C．Dosmalizeh
VLSTI	C	
Coka	C	Mr．K．Ani Kuriar
EDOV	C	Mras．N．Lashenl Prisuma
COI	C	Dr．Altya Sutima
DSPLIE	C	Dr，GNVSPMMr．KNKJPCSSL．
DCLIab	C	SmibinkexaviokMr．CD
8wboctis	C	Mr－KAKISITSKND
IFINSTE	c	Miss．MPS／MrSAB
Counodiling	c	Mr．j．Lerie Mahersifa Kumar

Subiect	Section	Nowne of the Finculty
DSP	B	Mr．K．Napentra Kumer
muesoc	B	STr．S Xashim Noor Basha
DE	B	Mr．M．A．Vima Kamalrash
VLSID	B	Sminl．Nazma
CORA	5	Mre．K．Mourik
CDEV	B	Mr．Y．S．Porselvin
COI	1	Mr．K．Rama Krekina
DSP Lab	5	Mr．KNKJMr SNSMESEVVR
DCLab	B	
MWECLLab	B	Mr＿SKNEEWEKAK
TEDSTE	景	
Cosnocling	λ	Miss．N．Touziz Suhtanis
Subioct	Section	Nime of cie Fsality
Der	D	Mr．Y．Ptirven Kumar hedor
NWzac	b	Mr．S．Kasif Husiain
DC	D	Mrid．tajes Sedy
VLSID	D	Sutw．MEtieswart
Coka	D	MrsG．Yathasmin
DDV	D	Mrju．Leela Mahondra Kumor
col	D	Mr．taia Sekar
DSPL覀	D	Wr＿SAEMMr KSKNMENEVK／S
DCLE	D	
MWSECLT	D	Mr．MVREMMr．SRH
TEISTE	D	
Counceling	A	Mbs．NFocria Suithan

Dr．T．BangChampantraith AA PRAS．AD
 Principal

PAINCIPAL
K．GM College of Enge，\＆Tech． （Autonomots）
NAMOVAL－ 518501 ，Narictyal（DL），A．P．

STUDENT PERFORMANCE EVALUATION

EXTERNAL EVALUATION (50 MARKS)

Block Diagram/ Circuit Diagram	10 M
Procedure	05 M
Connections/Code	10 M
Observations/GRAPHS	10 M
Result	05 M
Viva voce	10 M

INTERNAL EVALUATION (25 MARKS)

Execution	2 M
Observations and Graphs	1 M
Result	1 M
Viva Voce	1 M

RGM College of Engineering and Technology Autonomous
 Department of Electronics and Communication Engineering

Digital Communication Laboratory Manual
 III B.Tech. II-Semester (R-20 Regulation)

(ESTD-1995)

RGM College of Engineering and Technology
 Autonomous

Affiliated to JNTUA-Ananthapuramu, Approved by AICTE-New Delhi Accredited by NBA-New Delhi, Accredited by NAAC with Grade A+, New Delhi

(A0481206)DIGITAL COMMUNICATION LAB

COURSE OBJECTIVES:

* To study the signal sampling by determining the sampling rates for baseband signals and reconstruct the signal.
* To study various modulation and demodulation process.
* To study the various steps involved in generating and degenerating different pulse modulation techniques.
* To study various modulation techniques using simulation process (MATLAB).
* To study the generation and demodulation of PSK, DPSK, FSK.

COURSE OUTCOMES:

At the end of this course the students are able to;

* Study and comprehend the basics of Communication system and different Digital Modulation Systems.
* Analyse the operation of each device in various types of modulation systems.
* Design and conduct experiments of different Digital modulation systems, in order to interpret the results.
* Demonstrate the skill to use modern engineering tools like CAD tools.

MAPPING WITH COs \& POs:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1		2	1											1	
CO2	3	3	2	1	1				1	2					
CO3	1	3	3	2	1	1			2	1		2	3	1	
CO4	2	2	1	3				2	1	1	2		1	3	

Minimum of 8 experiments to be conducted (Four from each Part-A\&B) PART-A

1. Sampling Theorem - verification.
2. Time division multiplexing.
3. Pulse code modulation.
4. Differential pulse code modulation.
5. Delta modulation.
6. Frequency shift keying.
7. Differential phase shift keying.
8. QPSK modulation and demodulation.

PART-B

Modeling of Digital Communications using MATLAB

1. Sampling Theorem - verification.
2. Pulse code modulation.
3. Differential pulse code modulation.
4. Delta modulation.
5. Frequency shift keying.
6. Phase shift keying.
7. Differential phase shift keying.
8. QPSK modulation and demodulation.
9. Channel and its characteristics.

INDEX

S.No	Name of the Experiment	Page Nos.
	PART - A	
	Hardware Experiments	
1	Sampling Theorem-Verification	1-4
2	Time Division Multiplexing	5-8
3	Pulse Code Modulation	9-12
4	Differential Pulse Code Modulation	13-16
5	Delta Modulation	17-20
6	Frequency Shift Keying	21-26
7	Differential Phase Shift Keying	27-30
8	QPSK Modulation and Demodulation	31-34
	PART - B	
	Modeling of Digital Communications using MATLAB	
9	Sampling Theorem-Verification	35-40
10	Pulse Code Modulation	41-45
11	Differential Pulse Code Modulation	46-49
12	Delta modulation	50-53
13	Frequency shift keying	54-57
14	Phase Shift keying	58-61
15	Differential Phase Shift Keying	62-65
16	QPSK Modulation and Demodulation	66-71
17	Channel and Its Characteristics	72-73
18	Amplitude Shift Keying	74-76

Objective of Laboratory

The main objective of this lab is to learn MATLAB and know why it is an indispensable tool, especially for electronics and communication engineer.
Evaluation Procedure for Internal Laboratory Examinations

- For Practical subjects there shall be a continuous evaluation during the semester for 25 sessional marks and 50 end examination marks. Of the 25 marks for internal, 20 marks will be awarded for day-to-day work and 5 marks to be awarded by conducting an internal laboratory test.
- Day-to-day evaluation:
- The concerned teachers have to do necessary corrections with explanations and evaluate each lab experiment.
- Concerned Lab Incharge should also enter the marks in index page of the record and observation book \& also at the end of each experiment with signature.
- Internal Laboratory examination:

Ten marks will be awarded for internal Lab exam, the division of the marks as given below:

1. Execution
: 02Marks
2. Observations and Graphs
: 01 Mark
3. Result
: 01 Mark
4. Viva voce
: 01 Mark

- Internal lab exam will be conducted by the in-charge Faculty member along with Associate Faculty members

Evaluation Procedure for External Laboratory Examinations

- This Examination Will Be Conducted During The Last Week Of The Semester As Per The Schedule Given By The RGMCET. (Autonomous)
- This examination will be conducted by the teacher in-charge of the lab and another two faculty members of the same department (who have more knowledge in the concern lab), recommended by Head of the Department with the approval of Principal.
- The maximum marks for this examination is 50 .
- The distribution of marks for the evaluation is as follows.

1. Block Diagram/ Circuit Diagram : 10 Marks
2. Procedure :05 Marks
3. Connections/Code : 10 Marks
4. Observations/GRAPHS
5. Result
: 10 Marks
:05 Marks
6. Viva voce
: 10 Marks

EXPERIMENT: 1

SAMPLING THEOREM AND ITS VERIFICATION

AIM:

1. To acquire the practical knowledge of Sampling Theorem.
2. To sample the given message signal at three different sampling rates i.e., under sampling, Critical sampling and Over sampling.
3. To reconstruct the message signal from the sampled signal.
4. To plot the corresponding waveforms on the Graph sheets.

APPARATUS:

1. Sampling Theorem kit
2. Function Generator
3. Patch chords
4. Oscilloscope
5. Oscilloscope Probes
6. Oscilloscope Probes

BLOCK DIAGRAM:

CIRCUIT DIAGRAM:

PROCEDURE:

1. The trainer kit is to be switched on.
2. A sinusoidal signal of requiredamplitude and frequency is to be given as the input to the sampling circuit.
3. A sampling clock of certain amplitude and frequency is to be given as input to the sampling clock.
4. The Frequency of sampling clock is to be varied for Nyquistrate, under sampling and over sampling.
5. The message signal, sampling clock and sampled signal are to be observed on the oscilloscope.
6. The Amplitude and frequency of the corresponding signals is to be noted for all the above cases,
7. The Sampled signal is to be given as an input to the reconstruction filter and the reconstructed output is to be observed.
8. The reconstruction filter should be designed for R and C values depending on the time constant of the message signal.
9. The Corresponding Waveforms are to be plotted on the Graph sheets.

EXPECTED WAVEFORMS

Sampling

Signal

Analog Input Signal

Sampled
Output

Reconstructed Signal

OBSERVATIONS:

Signal: Characteristic:	Under Sampling	Critical Sampling	Over Sampling
Message Signal:			
Amplitude			
Time period			
Frequency			
Sampling Clock			
Signal:			
Amplitude			
Time period			
Frequency			
Sampled Signal:			
Amplitude			
Time period			
Frequency			
Reconstructed signal:			
Amplitude			
Time period			
Frequency			

THEORY:

CALCULATIONS:

	Under Sampling	Critical Sampling	Over sampling
R or C			

DISCUSSION:

ADVANTAGES:

DISADVANTAGES:

APPLICATIONS:

1. Digital audio uses PCM and digital signals for sound reproduction.
2. Sampling rate is necessary to capture audio covering the entire $20-20000 \mathrm{HZ}$ range.
3. 3Dsampling is the process of volume reading samples a 3 D grid of pixels procedure.

CONCLUSION:

RESULT:

INFERENCE:

PRE-EXPERIMENT VIVA-VOCE:

1. State Sampling Theorem.
2. What are the different types of Sampling Techniques based on the sampling rate?
3. What are the different types of sampling techniques, in general?
4. How does the reconstruction of the message signal possible from the sampled Signal?

POST-EXPEERIMENT VIVA-VOCE:

1. What is the Nyquist rate for Critical sampling?
2. What are difficulties you have faced while reconstructing the message signal for under Sampling?
3. What are difficulties you have faced while reconstructing the message signal for Over Sampling?
4. For which case,do you suggest for the better reconstruction of the messagesignalfrom the sampled signal?

EXPERIMENT: 2
 TIME DIVISION MULTIPLEXING \& DEMULTIPLEXING

AIM:

* To acquire the practical knowledge of the time division multiplexing \&demultiplexing
* To multiplex and multiplex 8 digital signals
* To plot the corresponding waveforms on the graph sheets

APPARATUS:

* TDMkit
* CRO/DSO
* Patch cards
* Probes

BLOCK DIAGRAM

Figure 4.19 Block diagram of TDM system.

CIRCUIT DIAGRAM:

LOGICDIAGRAM:-

TDM Demultiplexer

Switching

Signal
$5 \mathrm{Vpp}, 2 \mathrm{KHz}$

TDM Multiplexer

PROCEDURE:-

1. The 1 KHz clock signal is to be connected to the address generator input.
2. By giving HIGH or LOW signals to the multiplexer channel, as inputs, the output of the multiplexer and the output of the multiplexer and the output of the multiplexer is to be connected to the demultiplexer.
3. Suppose, 10000000 signal is connected as input to the 8 to 1 multiplexer.
4. Multiplexer selects the HIGH input of channel 1 for each 8 times of the input clock signal.
5. Once multiplexed, after selection to the particular channel, that channel output is available at the demultiplexing output until the state of the particular channel changed be connected.
6. Repeat the same setup for any i / p condition.
7. Connect 10 kHz clock signal to the address generator i / p.
8. Connect A2 to channel 2 of CRO and trigger with $\mathrm{CH}-2$-ve slope. Connect the multiplexer channel HL HLHL.
9. Connect multiplexer o/p(i.e. serial) to CH 1 of CRO and observe waveform.
10. Also connect the mux o / p to demux and observe the i / p channels of the mux and the o / p of demux.
11. Now give the data generator o / p to different channels and observe the demux o / p

EXPECTED GRAPHS:-

Signal 1

Signal 2

Switching

Signal

THEORY:

CALCULATIONS:

DISCUSSION:

ADVANTAGES:

DISADVANTAGES:

APPLICATIONS:

CONCLUSIONS:

INFERENCE:

PRE - EXPERIMENT VIVA-VOCE:

1. Define time division multiplexing and demultiplexing.
2. Draw the block diagram of time-Division Multiplexed PAM system

POST-EXPERIMENT VIVA - VOCE:

1. Enlist the application TDM system.
2. List out the advantages and disadvantages of TDM system.

EXPERIMENT: 3

PULSE CODE MODULATION AND DEMODULATION

AIM:

1. To acquire the practical knowledge of Pulse Code Modulation And Demodulation
2. To calculate
i) Signal Power
ii) Quantization Noise Power
iii) Signal to Quantization Noise Power [SQNR]
3. To plot the corresponding waveforms on the graph sheets.

APPARATUS:

1. Pulse Code Modulation and Demodulation Trainer Kit
2. Patch chords
3. Oscilloscope
4. Oscilloscope Probes

BLOCK DIAGRAM:

PCM Modulator

LM 324 Pin Connection

CIRCUIT DIAGRAM:

PROCEDURE:

1. The trainer kit is to be switched ON.
2. The Message Signal at the output terminal (AF Output) of the Signal (Source) Generator is to be observed on the Oscilloscope and its Amplitude and Frequency are to be noted down.
3. The Sampling Clock signal at the output terminal of the Clock Generator is to be observed on the Oscilloscope and its Amplitude and Frequency are to be noted down.
4. Now, the Message Signal and the Clock Signal are to be applied as inputs to Pulse Code Modulator.
5. The Quantized Output is to be observed on the Oscilloscope and the step height and
step-width are to be measured.
6. Then, the PCM signal at the output terminal of the modulator is to be observed on the Oscilloscope and its amplitude and bit duration are to be measured.
7. The PCM signal is to be applied as input to the demodulator and the demodulated signal at the output terminal of the demodulator is to be observed at the output terminal of the demodulator.
8. The amplitude and the frequency of the demodulated signal are to be measured.
9. The corresponding waveforms are to be plotted on the graph sheets.

EXPECTED WAVEFORMS:

Unipolarsine

 wave Input

Sampled Output

PCMOutput

OBSERVATIONS;

```
Message Signal:
Amplitude :
Time Period:
Frequency :
Clock Signal:
Amplitude :
Time Period:
Frequency :
Quantized Signal:
Step-height :
Step-width :
PCM Signal:
Amplitude :
Bit Duration :
```


Demodulated Signal:
 ```Amplitude :```
 Time period :
 Frequency
 :
 1. Time Period:
 2. Frequency:

CALCULATIONS:

1. Signal Power:
2. Quantization Noise Power:
3. Signal to Quantization Noise Ratio[SQNR]:

ADVANTAGES:

DISADVANTAGES:

APPLICATIONS:

CONCLUSION:

INTERFERENCE:

PRE-EXPERIMENT VIVA-VOCE:

1. Define Pulse Code Modulation.
2. What do you mean by "Quantization"?
3. How do you assign the bits to the Quantization levels?
4. What is the role of Parallel-to-Serial converter in a PCM Transmitter?
5. How do you calculate the SQNR of a PCM signal?
6. What are the advantages and disadvantages of PCM?

POST-EXPERIMENT VIVA-VOCE:

1. How do the amplitude Variations of the message signal affect the Stair-case and PCM signal?
2. Express the SQNR of the PCM signal generated in your experiment.
3. How can the performance of the PCM system be improved?

EXPERIMENT: 4

DIFFERENTIAL PULSE CODE MODULATION AND DEMODULATON

AIM:

1) To acquire the practical knowledge of Differential Pulse Code Modulation and Demodulation
2) To calculate
a. Signal Power:
b. Quantization Noise Power:
c. Signal to Quantization Noise Ratio [SQNR]:
3) To plot the corresponding waveforms on the graphs sheets.

APPARATUS:

$>$ Differential Pulse Code Modulation and Demodulation Trainer Kit
$>$ Patch chords
$>$ Oscilloscope
> Oscilloscope Probes

Block diagram:

DPCM System. (a) Transmitter. (b) Receiver

CIRCUIT DIAGRAM:

PROCEDURE:

1) The Trainer Kit to be switched ON
2) The Message Signal at the output terminal (AF Output)of the signal (Source)

Generator is to be observed on the Oscilloscope and its Amplitude and Frequency are to be noted down.
3) The Sampling Clock Signal at the output terminal of the Clock Generator is to be observed on the Oscilloscope and its Amplitude and Frequency are to be noted down.
4) Now,the Message signal and the Clock Signal are to be applied as inputs to Differential Pulse Code Modulator.
5) The Quantized Output is to be observed on the Oscilloscope and the step height and step-width are to be measured.
6) Then the DPCM Signal at the output terminal of the modulator is to be observed on the Oscilloscope and its amplitude and bit duration are to be measured.
7) The DPCM Signal is to be applied as input to the Demodulator and the Demodulated signal at the output terminal of the Demodulator.
8) The Amplitude and Frequency of the Demodulated signal are to be measured.
9) The Corresponding Waveforms are to be plotted on the Graph Sheets.

Expected wave form:

OBSERVATIONS:

Message Signal:
Amplitude :
Time Period:
Frequency :
Clock Signal:
Amplitude :
Time Period:
Frequency :
Quantized Signal:
Step-height :
Step-width :
DPCM Signal:
Amplitude :
Bit Duration:
Demodulated Signal:
Amplitude :
Time period :
Frequency :

THEORY :
CALCULATIONS :
Signal Power :Quantization Noise Power :
Signal to Quantization Noise Ratio [SQNR]:
DISCUSSION :
ADVANTAGES :
DISADVANTAGES :
APPLICATION :
CONCLUSION :
INFERENCE :

PRE-EXPERIMENT VIVA-VOCE:

1. Define Differential Pulse Code Modulation.
2. What do you mean by "Stair-case Approximation"?
3. How do you assign the bits to the Quantization levels?
4. List out the factors which affects the predictor output.
5. How do you calculate the SQNR of a DPCM Signal?
6. What is the advantage of DPCM over PCM?

POST-EXPERIMENT VIVA-VOCE:

1) How do the amplitude variations of the message signal affects the Stair-case and DPCM Signal?
2) Express the SQNR of the DPCM signal generated in your experiment.
3) How can the performance of the DPCM System be improved?
4) What is the role of predictor in DPCM System?

EXPERIMENT: 5
 DELTA MODULATION AND DEMODULATION

AIM:

1. To acquire the practical knowledge of Delta Modulation and Demodulation.

TO CALCULATE:

i) Signal Power:
ii) Quantization Noise Power:
iii) Signal to Quantization Noise Ratio [SQNR]:
iv) To plot the corresponding waveforms on the graph sheets.

APPARATUS:

> Delta Modulation and Demodulation Trainer Kit
$>$ Patch chords
$>$ Oscilloscope
$>$ Oscilloscope Probes

BLOCK DIAGRAM:

(b)

CIRCUIT DIAGRAM:

EXPECTED WAVE FORM:

PROCEDURE:

1) The Trainer Kit to be switched ON
2) The Message Signal at the output terminal (AF Output)of the signal (Source) Generator is to be observed on the Oscilloscope and its Amplitude and Frequency are to be noted down.
3) The Sampling Clock Signal at the output terminal of the Clock Generator is to be observed on the Oscilloscope and its Amplitude and Frequency are to be noted down.
4) Now, the Message signal and the Clock Signal are to be applied as inputs to Differential Pulse Code Modulator.
5) The Quantized Output is to be observed on the Oscilloscope and the step height and step-width are to be measured.
6) Then the DM Signal at the output terminal of the modulator is to be observed on the Oscilloscope and its amplitude and bit duration are to be measured.
7) The DM Signal is to be applied as input to the Demodulator and the Demodulated signal at the output terminal of the Demodulator.
8) The Amplitude and Frequency of the Demodulated signal are to be measured.
9) The Corresponding Waveforms are to be plotted on the Graph Sheets.

OBSERVATIONS:

Message Signal:

Amplitude :
Time Period :
Frequency :
Clock Signal :
Amplitude :
Time Period :
Frequency :
Quantized Signal:
Step-height :
Step-width :
DPCM Signal :
Amplitude :
Bit Duration :
Demodulated Signal:
Amplitude :
Time period :
Frequency :

THEORY:

CALCULATIONS:

i) Signal Power
ii) Quantization Noise Power
iii) Signal to Quantization Noise Ratio [SQNR]:

DISCUSSION :

ADVANTAGES :

DISADVANTAGES :

APPLICATION :

CONCLUSION :

INFERENCE :

PRE-EXPERIMENT VIVA-VOCE:

1. Define Delta Modulation.
2. What do you mean by "Stair-case Approximation"?
3. How do you assign the bits to the Quantization levels?
4. What happens to the output signal if the amplitude variation of the message signal is
i. Greater than the step size
ii. Less than the step size
5. What are the types of Quantization errors in delta modulation?
6. How do you calculate the SQNR of a Delta Modulated Signal?
7. What is the advantage of delta modulation over PCM?

POST-EXPERIMENT VIVA-VOCE:

1) How do the amplitude variations of the message signal affects the Stair-case and DPCM Signal?
2) Express the SQNR of the DPCM signal generated in your experiment
3) How can the performance of the DPCM System be improved?
4) What is the role of predictor in DPCM System?

AIM:

1) To acquire the practical knowledge of modulation and demodulation techniques of Shift keying.
2) To measure Mark Frequency and the Space Frequency of the FSK signal.
3) To calculate Band width \& data rate.
4) To plot the corresponding Waveforms on graph sheet.

APPARATUS:

> FSK Modulation and Demodulation Trainer Kit
> Digital Storage Oscilloscope/CRO
$>$ Probes
$>$ Patch cords

BLOCK DIAGRAM:

(a)

(b)

LOGIC DIAGRAM:

FSK Modulator

FSK Demodulator

ALTERNATE CIRCUIT:

FSK Modulator

CIRCUIT DIAGRAM:

PROCEDURE:

1) The Trainer Kit is to be switched ON
2) The carrier signal is to be observed on the Oscilloscope and amplitude and frequency of the carrier signal are to be measured.
3) Among D1,D2,D3,D4 provided on the kit,any one of the data is to be selected as modulating signal and its amplitude and Ton,Toff are to be measured.
4) The modulating signal to the datainput and the carrier signal are to be applied as inputs to the FSK modulator.
5) At the output terminal of the Modulator, the FSK output is to be observed on the Oscilloscope and the amplitude and the Mark-Frequency and Space-Frequency of the FSK signal arc to be measured.
6) The modulated signal is to be applied as input to demodulator and the demodulated signal is to be observed at the output terminal of the Demodulator.
7) The corresponding waveforms are to be plotted on the Graph Sheets.

EXPECTED WAVEFORMS:

OBSERVATIONS:
Modulating signal(DATA)
Amplitude:
Bit Duration:
Data Sequence:
Carrier signal:
Amplitude:
Time-period:
Frequency:
FSK signal:
Amplitude:
Mark Frequency:
Space Frequency:
Demodulated signal:
Amplitude:
Bit Duration:
Data sequence:

THEORY:

CALCULATIONS:

DISCUSSIONS:

ADVANTAGES:

DISADVANTAGES:

APPLICATIONS:

CONCLUSION:

RESULT:

INFERENCE:

PRE-EXPEREMENT VIVA-VOICE:

1) What is meant by Frequency Shift Keying?
2) What are the advantages of FSK technique over ASK technique?
3) What are basic blocks of an FSK Modulation System?
4) List out the applications of FSK system?

POST-EXPERIMENT VIVA-VOICE:

1) Draw the constellation diagram of FSK.
2) For the given 8 bit data 10111010 draw the FSK output waveforms.
3) Find the Symbol Error Probability for the FSK signal obtained in the experiment.

EXPERIMENT: 7

DPSK MODULATION AND DEMODULATION

AIM:

1) To acquire the practical knowledge of DPSK Modulation and Demodulation System.
2) To calculate the Error Probability of DPSK System.
3) To plot the corresponding wave forms on the graph sheet.

APPARATUS:

$>$ DPSK Modulation and Demodulation Trainer Kit.
$>$ Digital Storage Oscilloscope
$>$ Probes
$>$ Patch cords

BLOCK DIAGRAM:

(a)

(b)

CIRCUIT DIAGRAM:

PROCEDURE:

1) The Trainer Kit is to be switched ON.
2) Among D1, D2, D3, D4 provided on the kit, any one of the data is to be selected as Modulating Signal and its Amplitude and T_{ON}, TOFFare to be measured.
3) The Carrier Signal is to be observed on the Oscilloscope and the Amplitude and the Frequency of the Carrier Signal are to be measured.
4) The Bit-Clock Signal is to be observed on the Oscilloscope and the Amplitude and the Frequency of the Bit-Clock Signal are to be measured.
5) The Modulating Signal to the data input and the Carrier Signal are to be appliedAs inputs to the DPSK Modulator.
6) At the output terminal of the Modulator, the DPSK Signal is to be observed on the Oscilloscope and the Amplitude and the Mark-Frequency and the Space-Frequency of the DPSK Signal are to be measured.
7) The Modulating Signal is to be applied as input to the demodulator and the Demodulating Signal is to be observed at the output terminal of the Demodulator.
8) The Corresponding Waveforms are to be plotted on the Graph Sheets.

Expected wave form:

DPSK Signal Waveforms

OBSERVATIONS:

Modulating Signal(DATA)

Amplitude:

Bit Duration:
Data Sequence:

Carrier Signal:

Amplitude:
Time-Period:
Frequency:
DPSK Signal:
Amplitude:
Frequency:
Demodulated Signal:
Amplitude:

Bit Duration:

Data Sequence:

THEORY:

CALUCULATIONS:

DISCUSSIONS:

ADVANTAGES:

DISADVANTAGES:

APPLICATIONS:

CONCLUSION:

INFERENCE:

PRE-EXPERIMENT VIVA-VOICE:

1) What do you understand by DPSK?
2) Enlist the advantages of DPSK System over PSK.
3) List out the application of DPSK system.

POST-EXPERIMENT VIVA-VOICE:

1) What is the Error Probability of a DPSK?Compare the theoretical and Practical values of Pe
2) What are the disadvantages of DPSK?

EXPERIMENT: 8

QPSK MODULATION AND DEMODULATION

AIM:

1. To acquire the practical knowledge of QPSK modulation and demodulation
2. To calculate the Error Probability of QPSK system
3. To plot the corresponding waveforms on the graph sheet

APPARATUS:

$>$ QPSK modulation and demodulation Trainer Kit
$>$ Digital Storage Oscilloscope CRO
$>$ Probes
$>$ Patch cords

BLOCK DIAGRAM:

CIRCUIT DIAGRAM:

PROCEDURE:

1. The Trainer Kit is to be switched on.
2. Among D1, D2, D3, D4 provided on the kit, any one of the data is to be selected as Modulating signal and its amplitude and $\mathrm{T}_{\text {on }}, \mathrm{T}_{\text {off }}$ are to be measured.
3. The carrier signal is to be observed on the Oscilloscope and the Amplitude and the Frequency of the Carrier signal are to be measured.
4. The Bit-Clock Signal is to be observed on the Oscilloscope and the Amplitude and the Frequency of the Bit-Clock Signal are to be measured.
5. The Modulating Signal to the data input and the Carrier Signal are to be applied as inputs to the QPSK Modulator.
6. AT the output terminal of the Modulator, the QPSK Signal is to be observed on the Oscilloscope and the Amplitude and the Mark-Frequency and the Space-Frequency of the QPSK Signal are to be measured.
7. The Modulated Signal is to be applied as input to demodulator and the Demodulated signal is to be observed at the output terminal of the Demodulator.
8. The Corresponding Waveforms are to be plotted on the Graph Sheets.

EXPECTED WAVE FORMS:

Reset Pailses $00-R_{3} R_{n o}$
 nf D_{2}

$$
\begin{gathered}
10-\mathrm{S}_{\mathrm{x}} \mathrm{R}_{40} \\
{ }_{\text {at }} \mathrm{C}_{z}
\end{gathered}
$$

$$
\begin{gathered}
11-S_{3} S_{10} \\
\text { at } A_{2}
\end{gathered}
$$

$$
\begin{gathered}
01-R_{5} S_{10} \\
\operatorname{ntr} B_{2}
\end{gathered}
$$

OBSERVATIONS:

Modulating Signal (DATA):

Amplitude:
Bit Duration:
Data Sequence:

CARRIER SIGNAL:

Amplitude:
Time period:
Frequency:

QSK SIGNAL:

Amplitude:
Frequency:

Demodulated Signal:

Amplitude:
Bit Duration:
Data Sequence:

THEORY:

CALUCLATIONS:

DISCUSSION:

ADVANTAGES:

DISADVANTAGES:

APPLICATIONS:

CONCLUSION:

INFERENCE:

PRE-EXPERIMENTVIVA-VOICE:

1. What do you understand by QPSK?
2. Enlist the advantages of QPSK system over PSK.
3. List out the applications of QPSK system.

POST EXPERIMENTVIVA-VOICE:

1) What is the Error Probability of a QPSK signal? Compare the theoretical and practical values of P.
2) What are the disadvantages of QPSK System?

EXPERIMENT: 9
 SAMPLING THOEREM-ITS VERIFICATION

AIM:

1) To write and simulate the MAT Lab code for Natural Software.
2) To plot the corresponding Waveforms on the Graph Sheets

APPARATUS:

> PC Installed with Windows XP or higher by double clicking its icon
$>$ Power Supply

PROCEDURE:

1) Open the MATLAB software by double clicking the icon
2) MATLAB logo will appear and after few moments Command Prompt will appear.
3) Go to the File Menu and select a New M-File (File_New_M-File) or in the left hand Corner a blank white paper icon will be there. Click it once.
4) A blank M-file will appear with a title 'untitled'
5) Now start typing your program .After completing save the M-file with appropriatename. To execute the program Press F5 or go to Debug menu and select Run.
6) After execution, output will appear in the command window. If there is an error then with an alarm, type of error will appear in red color.
7) Rectify the error if any and go to Debug Menu and select Run.

BLOCK DIAGRAM:

CIRCUIT DIAGRAM:

MATLab CODE:

clc;
clearall;
closeall;
$\mathrm{t}=0: 0.001: 1$;
$\mathrm{fm}=10$;
fs $1=\mathrm{fm}$;
fs $2=2 *$ fm;
fs $3=4 *$ fm;
$a=2 ; \%$ amplitude of analog signal
$\mathrm{Vm}=\mathrm{a} * \sin (2 * \mathrm{pi} * \mathrm{fm} * \mathrm{t})$;
$\mathrm{Vc} 1=$ square $\left(2 * \mathrm{p}{ }^{*} * \mathrm{fs} 1 * \mathrm{t}\right)$;
$\mathrm{n}=$ length(Vc1)
fori=1:n
if $(\operatorname{Vc} 1(\mathrm{i})<=0)$
Vc1(i) $=0$;
else
Vc1(i)=1;
end
end
\%under modulation
figure (1)
$\mathrm{y}=\mathrm{Vc} 1 . * \mathrm{Vm}$;
subplot($3,1,1$);
plot(t,Vm);
subplot(3,1,2);
plot(t,Vc1);
axis([0 1 -0.5 1.5$]$)
subplot($3,1,3$);
plot(t,Vc1,'r-');
holdon;
plot(t,y1);
$\operatorname{axis}\left(\left[\begin{array}{lll}0 & 1 & -a\end{array}\right]\right)$
\%critical modulation

Vc2=square $(2 * \mathrm{pi} * \mathrm{fs} 2 * \mathrm{t})$;
$\mathrm{n}=$ length(Vc2)
fori=1:n
if $(\operatorname{Vc} 2(\mathrm{i})<=0)$
Vc2(i)=0;
else
Vc2(i) $=1$;
end
end
figure (2)
$\mathrm{y} 2=\mathrm{Vc} 2 . * \mathrm{Vm}$;
subplot($3,1,1$);
plot(t,Vm);
subplot(3,1,2);
plot(t,Vc2);
axis([0 1 -0.5 1.5$]$)
subplot($3,1,3$);
plot(t,Vc2,'r-');
holdon;
plot(t,y2);
axis([0 1 -a a $]$)
\%over modulation

Vc3=square $\left(2 *\right.$ pi ${ }^{*} \mathrm{fs} 3 *$ t $)$;
$\mathrm{n}=$ length(Vc3)
fori=1:n
if $(\operatorname{Vc} 3(i)<=0)$

Vc3(i) $=0$;
else
$\operatorname{Vc} 3(\mathrm{i})=1$;
end
end
figure (3)
$\mathrm{y} 3=\mathrm{Vc} 3 . * \mathrm{Vm}$;
subplot(3,1,1);
plot(t, Vm);
subplot(3,1,2);
plot(t,Vc3);
axis([llllll $1-0.51 .5])$
subplot($3,1,3$);
plot(t,Vc3,'r-');
holdon;
plot(t,y3);
$\operatorname{axis}([01-a \mathrm{a}])$

WAVEFORMS:

Rajeev Gandhi Memorial College of Engineering and Technology

THEORY:

CALCULATIONS:

DISCUSSION:

ADVANTAGES:

DISADVANTAGE:

APPLICQATION:

CONCLUSION:

INFERENCE:

PRE-EXPERIMENT VIVA-VOCE:

1) State Sampling Theorem
2) What are the different types of Sampling Techniques based on the sampling rate?
3) What are the different types of sampling techniques, in general?
4) How does the reconstruction of the message signal possible from the sampled Signal?

POST - EXPERIMENT VIVA-VOCE:

1. What is theNyquist rate forCritical sampling?
2. What are difficulties you have faced wile reconstructing the message signal for under Sampling?
3. What are the difficulties you have faced while reconstructing the message signal for over Sampling?
4. For which case, do you suggest for the better reconstruction of the message signal from the sampled signal?

EXPERIMENT: 10
 PULSE CODE MODULATION

AIM:

1. To write and simulate the MAT Lab code for Pulse Code Modulation and Demodulation.
2. To plot the corresponding waveforms on the Graph sheet

APPARATUS:

- PC installed with windows XP or higher Version and MAT Lab Software
- Power supply

BLOCK DIAGRAM:

PCM Modulator

CIRCUIT DIAGRAM:

PROCEDURE:

1. Open the MAT Lab Software by double clicking its icon.
2. MAT Lab logo will appear and after few moments command Prompt will appear
3. Go to the File Menu and select a New M-File. (File_New_M-File) or in the left hand corner a blank white paper icon will be there .click it once.
4. A blank M-File will appear with a title 'untitled'.
5. Now start typing your program. After completing, save the M-file with appropriate name. To execute the program press F5or go to debug menu and select run.
6. After executing, output will appear in the command window. If there is an error then with an alarm, type of error will appear in red colour.
7. Rectify the error if any and go to Debug Menu and select run.

MATLAB CODE:

clc;
closeall;
clearall;
$\mathrm{n}=$ input('Enter n value for n -bit PCM system : ');
$\mathrm{n} 1=$ input('Enter number of samples in a period : ');
$\mathrm{L}=2^{\wedge} \mathrm{n}$;
\% \% Signal Generation
\% x=0:1/100:4*pi;
$\% \mathrm{y}=8 * \sin (\mathrm{x}) ; \%$ Amplitude Of signal is 8 v
\% subplot($2,2,1$);
\% plot(x,y);grid on;
\% Sampling Operation
$\mathrm{x}=0: 2 * \mathrm{pi} / \mathrm{n} 1: 4 * \mathrm{pi} ; \% \mathrm{n} 1$ nuber of samples have tobe selected
$\mathrm{s}=8 * \sin (\mathrm{x})$;
subplot($3,1,1$);
plot(s);
title('Analog Signal');
ylabel('Amplitude---->');
xlabel('Time--->');
subplot(3,1,2);
stem(s);grid on; title('Sampled Sinal'); ylabel('Amplitude----'); xlabel('Time---->');
\% Quantization Process
vmax=8;
vmin=-vmax;
del=(vmax-vmin)/L;
part=vmin:del:vmax; \% level are between vmin and vmax with difference of del
code=vmin-(del/2):del:vmax+(del/2); \% Contaion Quantized valuses
[ind,q]=quantiz(s,part,code); \% Quantization process
\% ind contain index number and q contain quantized values
11=length(ind);

```
12=length(q);
fori=1:11
if(ind(i)~=0) % To make index as binary decimal so started from 0 to N
ind(i)=ind(i)-1;
end
i=i+1;
end
fori=1:12
if(q(i)==vmin-(del/2)) % To make quantize value inbetween the levels
q(i)=vmin+(del/2);
end
end
subplot(3,1,3);
stem(q);grid on; % Display the Quantize values
title('Quantized Signal');
ylabel('Amplitude--->');
xlabel('Time--->');
% Encoding Process
figure
code=de2bi(ind,'left-msb'); % Cnvert the decimal to binary
k=1;
fori=1:11
for j=1:n
coded(k)=code(i,j); % convert code matrix to a coded row vector
j=j+1;
k=k+1;
end
i=i+1;
end
subplot(2,1,1); grid on;
stairs(coded); % Display the encoded signal
axis([0 100-2 3]); title('Encoded Signal');
ylabel('Amplitude--->');
% Demodulation Of PCM signal
qunt=reshape(coded,n,length(coded)/n);
index=bi2de(qunt','left-msb'); % Getback the index in decimal form
q=del*index+vmin+(del/2); % getback Quantized values
subplot(2,1,2); grid on;
plot(q);
% Plot Demodulated signal
title('Demodulated Signal');
ylabel('Amplitude--->');
xlabel('Time--->');
```


WAVE FORM:

THEORY:

CALCULATIONS:

DISCUSSION:

ADVANTAGES:

DISADVANTAGES:

APPLICATIONS:

CONCLUSION:

INTERENCE:

PRE-EXPERIMENT VIVA-VOCE:

1. Define Pulse Code Modulation.
2. What do you mean by "Quantization"?
3. How do you assign the bits to the Quantization levels?
4. What is the role of Parallel-to-Serial converter in a PCM Transmitter?
5. How do you calculate the SQNR of a PCM Signal?
6. What are the advantages and disadvantages of PCM?

POST-EXPERIMENT VIVA-VOCE:

1. How do the Amplitude Variations of the Message signal affect the stair-case and PCM Signal?
2. Express the SQNR of the PCM Signal generated in your experiment.
3. How can the performance of the PCM System be improved?

EXPERIMENT: 11

DIFFERENTIAL PULSE CODE MODULATION

AIM:

1. To write the MAT Lab code for Differential pulse code Modulation and Demodulation.
2. To plot the corresponding Waveforms on the Graph sheet

APPARATUS:

- Pc installed with windows XP or higher version and MATLAB software.
- Power supply

PROCEDURE:

1. Open the MATLAB software by double clicking its icon
2. MATLAB logo will appear and after few moments command prompt will appear
3. Go to the file Menu and select a New M-file. (File_New_M-File) or in the left hand corner a blank white paper icon will be there. Click it once.
4. A blank M-file will appear with a title 'untitled'
5. Now start typing your program. After completing, save the M-file with appropriate name. To execute the program Press F5 or go to debug menu and select Run.
6. After execution, output will appear in the command window. If there is an error then with an alarm, type of error will appear in red color.
7. Rectify the error if any and go to Debug Menu and select Run.

BLOCK DIAGRAM:

CIRCUIT DIAGRAM:

MATLAB CODE:

predictor $=[01] ; \% \mathrm{y}(\mathrm{k})=\mathrm{x}(\mathrm{k}-1)$
partition $=[-1: .1: .9]$;
codebook $=[-1: .1: 1]$;
$\mathrm{t}=\left[0: \mathrm{pi} / 50: 2^{*} \mathrm{pi}\right] ;$
$\mathrm{x}=\operatorname{sawtooth}(3 * t)$; \% Original signal
\% Quantize x using DPCM.
encodedx $=$ dpcmenco(x,codebook,partition,predictor);
\% Try to recover x from the modulated signal.
decodedx = dpcmdeco(encodedx,codebook,predictor);
plot(t,x,t,decodedx,'--')
legend('Original signal','Decoded signal','Location','NorthOutside');
distor $=\operatorname{sum}\left((x\right.$-decodedx $\left.) .^{\wedge}\right) /$ length $(x) \%$ Mean square error

WAVEFORMS:

THEORY:

CALCULATIONS:

DISCUSSION:

ADVANTAGES:

DISADVANTAGES:

APPLICATIONS:

CONCLUSION:

INFERENCE:

PRE-EXPERIMENT VIVA-VOCE:

1. Define Differential Pulse code Modulation.
2. What do you mean by "QUANTIZATION"?
3. How do you assign the bits to the Quantization levels?
4. What is the role of predictor in a DPCM Transmitter?
5. How do you calculate the SQNR of a DPCM signal?
6. What are the advantages and disadvantages of DPCM?

POST-EXPERIMENT VIVA-VOCE:

1. How do the amplitude variations of the message signal affect the stair-case and DPCM signal?
2. Express the SQNR in dB of the DPCM signal generated in your experiment.
3. How can be the performance of the DPCM system be improved?

EXPERIMENT: 12
 DELTA MODULATION

AIM:

1. To write and simulate the MATLab code for Delta Modulation.
2. To write the Corresponding Waveforms on the Graph Sheet.

APPARATUS:

- PC Installed with Windows XP or higher Version and MATLab Soft.
- Power Supply.

PROCEDURE:

1. Open the MATLAB software by double clicking its icon.
2. MATLAB logo will appear and after few moments Command Prompt will appear.
3. Go to the File Menu and select a New M-file. (File _New _M-file) or in the left hand corner a blank white paper icon will be there. Click it once.
4. A blank M-file will appear with a title 'untitled'
5. Now start typing your program. After completing, save the M-file with appropriate name. To execute the program Press F5 or go Debug Menu and select Run.
6. After execution, output will appear in the Command window. If there is an error then with an alarm, type of error will appear in red color?
7. Rectify the error if any go to Debug Menu and select Run.

BLOCK DIAGRAM:

(b)

CIRCUIT DIAGRAM:

MATLAB CODE:

clc;
clearall;
closeall;
fs=20;
$\mathrm{t}=0: 1 / \mathrm{fs}: 1$;
am=1;
$\mathrm{fm}=1$;
$\mathrm{m}=\sin (2 * \mathrm{pi} * \mathrm{fm} * \mathrm{t})$;
plot(m);
$\mathrm{d}=2 * \mathrm{pi} * \mathrm{fm} * \mathrm{am} / \mathrm{fs}$;
for $\mathrm{n}=1$:length (m);
if($\mathrm{n}==1$)
$\mathrm{e}(\mathrm{n})=\mathrm{m}(\mathrm{n})$;
$\mathrm{eq}(\mathrm{n})=\mathrm{d} * \operatorname{sign}(\mathrm{e}(\mathrm{n}))$;
$\mathrm{mq}(\mathrm{n})=\mathrm{eq}(\mathrm{n})$;
else
$\mathrm{e}(\mathrm{n})=\mathrm{m}(\mathrm{n})-\mathrm{m}(\mathrm{n}-1)$;
eq(n) $=\mathrm{d} * \operatorname{sign}(\mathrm{e}(\mathrm{n}))$;
$\mathrm{mq}(\mathrm{n})=\mathrm{mq}(\mathrm{n}-1)+\mathrm{eq}(\mathrm{n})$;
end
end
holdon;
stairs(mq);

WAVEFORMS:

THEORY:

CALCULATIONS:

DISCUSSION:

ADVANTAGES:

DISADVANTAGES:

APPLICATIONSL:

CONCLUSION:

INFERENCE:

PRE-EXPERIMENT VIVA-VOCE:

1. Define Delta-Modulation.
2. What do you mean by "Stair-case Approximation"?
3. How do you assign the bits to the Quantization levels?
4. What happens to the output signal if the amplitude variation of the message signal?
a. isgreater than the step size.
b. less than the step size
5. What are the types of Quantization Errors in Delta Modulation?
6. How do you calculate the SQNR of a Detla Modulated Signal?
7. What is the advantage of delta modulation over PCM?

POST-EXPERIMENT VIVA-VOCE:

1. How do the amplitude Variations of the Message Signal effect the Stair-Case and modulated signal?
2. Express the SQNR of the delta modulated signal generated in your experiment.
3. How can the performance of the Delta-Modulation System be improved?

EXPERIMENT: 13
 FREQUENCY SHIFT KEYING

AIM:

1. To write and simulate the MATlab ${ }^{\circledR}$ code for Frequency Shift Keying Technique.
2. To plot theCorresponding Waveforms on the Graphsheet.

APPARATUS:

> Pc installed with Windows XP or higher Version and MATlab Software.
$>$ Power supply.

PROCEDURE:

1. Open the MAT Lab ${ }^{\circledR}$ software by double clicking its icon.
2. MATLAB logo will appear and after few moments command prompt will appear.
3. Go to the File Menu and select a New M-file.(File_New_M-file) or in the left hand corner a blank white paper icon will be there. Click it once.
4. A blank M-file will appear with a title 'untitled'
5. Now start typing your program. After completing, save the M-file with appropriate name. To execute the program Press F5 or go to Debug Menu and select Run.
6. After execution, output will appear in the command window. If there is an error then with alarm, type of error will appear in red colour.
7. Rectify the error if any go to Debug Menu and select Run.

BLOCK DIAGRAM:

(a)

(b)

CIRCUIT DIAGRAM:

MATLAB CODE:

clc;
clearall;
closeall;
$\mathrm{N}=8$;
Bit_stream=round(rand(1,N));
$\mathrm{fs}=100$;
$\mathrm{t}=0$:(1/fs):1;
$\mathrm{fm}=1$;
fc $1=1$;
fc2=3;
datastream $=[]$;
time=[];
carrier_signal1=[];
carrier_signal2=[];
fsk_signal=[];
fori= 1:1:length(Bit_stream);
datastream $=[$ datastream $(($ Bit_stream $(\mathrm{i})==0) *$ zeros $(1$, length $(\mathrm{t}))+$
(Bit_stream(i)==1)*ones(1,length(t)))];
carrier_signal1=[carrier_signal1 $(\sin (2 * \mathrm{pi} * \mathrm{fc} 1 * \mathrm{t}))]$;
carrier_signal2 $=[$ carrier_signal2 $(\sin (2 * \mathrm{pi} * \mathrm{fc} 2 * \mathrm{t}))]$;
fsk_signal=[fsk_signal ((Bit_stream(i)==0)* $\sin (2 * \mathrm{pi} * \mathrm{fc} 1 * \mathrm{t})+$
(Bit_stream(i)==1)*sin(2*pi*fc2*t))];
time=[time, t];
$\mathrm{t}=\mathrm{t}+1$;
end
subplot(4,1,1);
plot(time,datastream);
axis([0 time(end) -1.5 1.5])
subplot(4,1,2);
plot(time,carrier_signal1);
subplot(4,1,3);
plot(time,carrier_signal2);
subplot(4,1,4);
plot(time,fsk_signal);

WAVE FORM:

THEORY:

CALCULATIONS:

DISCUSSION:

ADVANTAGES:

DISADVANTAGES:

APPLICATIONS:

CONCLUSION:

INFERENCE:

PRE-EXPERIMENT VIVA-VIOCE:

1. Define FSK modulation?
2. What are the advantages of FSK system over ASK system?
3. Draw the block diagram of coherent and Non-Coherant FSK system?

POST-EXPERIMENT VIVA-VIOCE:

1. Given a bandwidth of 5000 Hz for an FSK signal, what are the baud rate and bit rate?
2. Find the minimum bandwidth for an FSK signal transmitting at 2000bps?

EXPERIMENT: 14
 PHASE SHIFT KEYING

AIM:

1. To write and simulate the MATLab code for Phase Shift Keying Technique
2. To plot the CorrespondingWaveforms on the Graph Sheets

APPARATUS:

- PC Installed with Windows XP or higher Version andMATLab Software
- Power Supply.

PROCEDURE:

1. Open the MATLAB® software by double clicking its icon.
2. MATLAB® logo will appear and after few moments Command Prompt will appear.
3. Go to the File Menu and select a New M- file. (File_New_M-file) or in the left hand corner a blank white paper icon will be there. Click it once.
4. A blank M-file will appear with a title "untitled'
5. Now start typing your program. After completing, save the M- file with appropriate name. To execute the program Press F5 or go to Debug Menu and select Run.
6. After execution, output will appear in the Command window.If there is an error then with an alarm, type of error will appear in red color.
7. Rectify the error if any and go to Debug Menu and select Run.

BLOCK DIAGRAM:

(a)

(b)

CIRCUIT DIAGRAM:

MATLab CODE:

clc;
clearall;
closeall;
$\mathrm{N}=8$;
Bit_stream=round(rand(1,N));
fs=100;
$\mathrm{t}=0:(1 / \mathrm{fs}): 1$;
$\mathrm{fm}=1$;
$\mathrm{fc}=1$;
datastream $=[]$;
time=[];
carrier_signal=[];
psk_signal=[];
fori= 1:1:length(Bit_stream);
datastream=[datastream $(-($ Bit_stream $(\mathrm{i})==0) *$ ones $(1$, length $(\mathrm{t}))+$ (Bit_stream $(\mathrm{i})==1) *$ ones $(1$, length $(\mathrm{t})))$];
carrier_signal=[carrier_signal $(\sin (2 * \mathrm{pi} * \mathrm{fc} * \mathrm{t}))$];
psk_signal $=\left[\right.$ psk_signal $-\left((\right.$ Bit_stream $(\mathrm{i})==0) * \sin \left(2 * \mathrm{pi} * \mathrm{fc}^{*}\right.$ t +pi$)+$
(Bit_stream $(\mathrm{i})==1) * \sin (2 * \mathrm{pi} * \mathrm{fc} * \mathrm{t}))$];
time=[time, t];
$\mathrm{t}=\mathrm{t}+1$;
end
subplot(3,1,1);
plot(time,datastream);
axis([0 time(end) -1.5 2])
subplot(3,1,2);
plot(time,carrier_signal);
subplot(3,1,3);
plot(time,psk_signal);

WAVEFORMS:

THEORY:

CALCULATIONS:

DISCUSSION:

ADVANTAGES:

DISADVANTAGES:

APPLICATIONS:

CONCLISION:

INFERENCE:

PRE-EXPERIMENT VIVA-VOICE:

1. Define PSK Modulation.
2. What are advantages of PSK System over ASK and PSK Systems?
3. Draw the Block Diagrams of Coherent and Non-Coherent PSK Systems.

POST-EXPERIMENT VIVA-VOICE:

1. Why do we make 180 degree phase shift in PSK and Why not90 or 270 ? Comment on this.
2. Given a bandwidth of 5000 Hz for a PSK signal, what are the baud rate and bit rate?
3. Find the minimum bandwidth for a PSK signal transmitting at 2000bps.

EXPERIMENT: 15
 DIFFERENTIAL PHASE SHIFT KEYING

AIM:

1. To write and simulate the MATLabcode for Differential Phase Shift Keying Technique.
2. To plot the Corresponding Waveforms on the Graph Sheet.

APPARATUS:

> PC Installed with Windows XP or higher Version and MATLab Software.
$>$ Power Supply.

PROCEDURE:

1) Open the MATLab software by double clicking its icon.
2) MATLAB logo will appear and after few moments Commands Prompt will appear.
3) Go to the File Menu and select a New M-file. Or in the left hand corner a blank white paper icon will be there. Click it once.
4) A blank M-file will appear with a title 'untiled'
5) Now start typing your program. After completing, save the M-file with appropriate name. To execute the program Press F5 or go to Debug Menu and select Run.
6) After execution, output will appear in the Command window. If there is an error then with an alarm. Type of error will appear in red color.
7) Rectify the error if any and go to Debug Menu and select Run.

BLOCK DIAGRAM:

(a)

(b)

CIRCUIT DIAGRAM:

MATLab CODE:

clc;
clearall;
closeall;
$\mathrm{N}=8$;
Bit_stream=round(rand $(1, \mathrm{~N})$);

$$
\mathrm{fs}=100
$$

$\mathrm{t}=0$:(1/fs):1;
$\mathrm{fm}=1$;
$\mathrm{fc}=1$;
datastream $=[]$;
time=[];
carrier_signal=[];
psk_signal=[];
diff_data=[];
dpsk_signal=[];
$\mathrm{z}=[]$;
$\mathrm{y}=\mathrm{xor}($ Bit_stream (1),0);
fori= 1:1:length(Bit_stream);
datastream $=[$ datastream $(-($ Bit_stream $(i)==0) *$ ones $(1$, length $(\mathrm{t}))+$
(Bit_stream(i)==1)*ones(1,length(t)))];
carrier_signal=[carrier_signal $(\sin (2 * \mathrm{pi} * \mathrm{fc} * \mathrm{t}))$];
$\mathrm{z}=[\mathrm{z}$ xor(Bit_stream(i),y)];
$\mathrm{y}=\mathrm{z}(\mathrm{i})$;
psk_signal $=[$ psk_signal $-(($ Bit_stream $(\mathrm{i})==0) * \sin (2 * \mathrm{pi} * \mathrm{fc} * \mathrm{t}+\mathrm{pi})+$
(Bit_stream $(\mathrm{i})==1) * \sin (2 * \mathrm{pi} * \mathrm{fc} * \mathrm{t}))]$;
diff_data=[diff_data $(-(\mathrm{z}(\mathrm{i})==0) *$ ones $(1$, length $(\mathrm{t})))+(\mathrm{z}(\mathrm{i})==1) *$ ones $(1$,length $(\mathrm{t}))]$;
dpsk_signal=[dpsk_signal $\left.(\mathrm{z}(\mathrm{i})==0) * \sin (2 * \mathrm{pi} * \mathrm{fc} * \mathrm{t}+\mathrm{pi})+(\mathrm{z}(\mathrm{i})==1) * \sin \left(2 * \mathrm{pi} * \mathrm{fc}^{*} \mathrm{t}\right)\right]$
time=[time, t];
$\mathrm{t}=\mathrm{t}+1$;
end
subplot(5,1,1);
plot(time,datastream);
axis([0 time(end) -1.5 1.5])
subplot(5,1,2);
plot(time,carrier_signal);
subplot(5,1,3);
plot(time,psk_signal);
subplot(5,1,4);
plot(time,diff_data);
axis([0 time(end) -1.5 1.5])
subplot(5,1,5);
plot(time,dpsk_signal);

WAVEFORMS:

THEORY:

CALCULATIONS:

DISCUSIION:

ADVANTAGES:

DISADVANTAGES:

APPLICATIONS:

CONCLUSION:

INFERENCE:

PRE-EXPERIMENT VIVA-VOCE:

1. Define DPSK MODULATION.
2. What are advantages of DPSK System over ASK and FSK System?
3. Draw the Block Diagram of Coherent and Non-Coherent DPSK Systems.

POST-EXPERIMENT VIVA-VOCE:

1. Why do we make 180 degree phase shift in DPSK and why not 90 or 270 ? Comment on this.
2. Given a bandwidth of 5000 Hz for a DPSK signal, what are the baud rate and bit rate?
3. Find the minimum bandwidth for a DPSK signal transmitting at 200bps.

EXPERIMENT: 16
 QUADRATURE PHASE SHIFT KEYING

AIM:

1) Towrite and simulate the MATLab code for Quadrature Phase Shift Keying Technique.
2) To plot the corresponding waveforms on the graph sheets.

APPARATUS:

- PC Installed with windows XP or higher Version and MATLab Software.
- Power Supply.

PROCEDURE:

1) Open the MATLAB software by double clicking its icon.
2) MATLAB® logo will appear and after few moments Command Prompt will appear.
3) Go to the File Menu and select a New M-file (file_New_M-file) or in the left hand corner a blank white paper icon will be there. Click it once.
4) A blank M-file will appear with a title 'untitled'.
5) Now start typing your program. After completing save the M-file with appropriate name. To execute the program Press F5 or go to Debug Menu and select Run.
6) After execution, output will appear in the Command window. If there is an error then with an alarm, of error will appear in red color.
7) Rectify the error if any and go to Debug Menu and select Run.

BLOCK DIAGRAM:

CIRCUIT DIAGRAM:

MATLAB CODE:

clearall;
closeall;
data=[0 1011110011]; \% information
\%Number_of_bit=1024;
\%data=randint(Number_of_bit,1);
figure (1)
stem(data, 'linewidth',3), grid on;
title(' Information before Transmiting ');
axis([011101.5$]$);
data_NZR $=2 *$ data-1; \% Data Represented at NZR form for QPSK modulation
s_p_data=reshape(data_NZR,2,length(data)/2); \% S/P convertion of data
$\mathrm{br}=10 .^{\wedge}$; \% Let us transmission bit rate 1000000
$\mathrm{f}=\mathrm{br}$; \% minimum carrier frequency
$\mathrm{T}=1 / \mathrm{br}$; \% bit duration
$\mathrm{t}=\mathrm{T} / 99: \mathrm{T} / 99: \mathrm{T}$; \% Time vector for one bit information
\% XXXXXXXXXXXXXXXXXXXXXXX QPSK modulatio
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
$\mathrm{y}=[]$;
y_in=[];
y_qd=[];
for($\mathrm{i}=1$:length(data)/2)

```
    yl=s_p_data(1,i)*\operatorname{cos}(2*pi*f*t); % inphase component
    y2=s_p_data(2,i)*sin}(2*\textrm{pi*f}*\textrm{t});%\mathrm{ Quadrature component
y_in=[y_in y1]; % inphase signal vector
y_qd=[y_qd y2]; %quadrature signal vector
    y=[y y1+y2]; % modulated signal vector
end
Tx_sig=y; % transmitting signal after modulation
tt=T/99:T/99:(T*length(data))/2;
figure(2)
subplot(3,1,1);
plot(tt,y_in,'linewidth',3), grid on;
title(' wave form for inphase component in QPSK modulation ');
xlabel('time(sec)');
ylabel(' amplitude(volt0');
subplot(3,1,2);
plot(tt,y_qd,'linewidth',3), grid on;
title(' wave form for Quadrature component in QPSK modulation ');
xlabel('time(sec)');
ylabel(' amplitude(volt0');
subplot(3,1,3);
plot(tt,Tx_sig,'r','linewidth',3), grid on;
title('QPSK modulated signal (sum of inphase and Quadrature phase signal)');
xlabel('time(sec)');
ylabel(' amplitude(volt0');
% XXXXXXXXXXXXXXXXXXXXXXXXXXXX QPSK demodulation
XXXXXXXXXXXXXXXXXXXXXXXXXX
Rx_data=[];
Rx_sig=Tx_sig; % Received signal
for(i=1:1:length(data)/2)
%%XXXXXX inphase coherent dector XXXXXXX
Z_in=Rx_sig((i-1)*length(t)+1:i*length(t)).*\operatorname{cos}(2*pi*f*t);
% above line indicat multiplication of received &inphasecarred signal
Z_in_intg=(trapz(t,Z_in))*(2/T);% integration using trapizodialrull
if(Z_in_intg>0) % Decession Maker
Rx_in_data=1;
else
Rx_in_data=0;
end
```

\% \% XXXXXX Quadrature coherent dector XXXXXX
Z_qd=Rx_sig((i-1)*length(t)+1:i*length(t)).*sin(2*pi*f*t);
\%above line indicat multiplication ofreceived\&Quadphasecarred signal

Z_qd_intg=(trapz(t,Z_qd))*(2/T);\%integration using trapizodialrull if (Z_qd_intg>0)\% Decession Maker
Rx_qd_data=1;
else
Rx_qd_data=0;
end

Rx_data=[Rx_dataRx_in_dataRx_qd_data]; \% Received Data vector end
figure(3)
stem(Rx_data,'linewidth',3)
title('Information after Receiveing ');
axis([01101.5$])$, grid on;
\% XXXXXXXXXXXXXXXXXXXXXXXXX end of program
XXXXXXXXXXXXXXXXXXXXXXXXXX
WAVEFORMS:

THEORY:

CALCULATIONS:

DISCUSSION:

ADVANTAGES:

DISADVANTAGES:

APPLICATIONS:

CONCLUSION:

INFERENCE:

PRE-EXPERIMENT VIVA-VOICE:

1. Define QPSK Modulation.
2. What are advantages of QPSK System?
3. Draw the block diagram of coherent and non-coherent QPSK System.

POST-EXPERIMENT VIVA-VOICE:

1. Given a bandwidth of 5000 hz for a QPSK signal, what are the baud rate and bit rate?
2. Find the minimum bandwidth for a QPSK signal transmitting at 2000bps.
3. What is the practical value of the Symbol errer probability of the generated QPSK signal?

CHANNEL AND ITS CHARACTERISTICS

AIM:

1. To write and simulate the MATLab code for a Discrete MemorylessChannel.
2. To plot the corresponding waveforms on the graph sheets.

APPARATUS:

> PC Installed with Windows XP or higher Version and MATLAB Software.
$>$ Power Supply

PROCEDURE:

1. Open the MATLAB Software by double clicking its icon.
2. MATLAB logo will appear and after few moments Command Prompt will appear.
3. Go to the File Menu and select a New M-file. (File_New_M-file) or in the left hand corner a blank white paper icon will be there. Click it once.
4. A blank M-file will appear with a title 'untitled'.
5. Now start typing your program. After completing, save the $\mathrm{M}=-$ file with appropriate name. To execute the program press F5 or go to Debug Menu and Select run.
6. After execution, output will appear in the Command Window. If there is an error then with an alarm, type of error will appear in red color.
7. Rectify the error if any and go to debug Menu and Select Run.

MATLAB CODE:

$\% \mathrm{C}=\mathrm{B} * \log (1+$ S/eta*B $)$ bits/s.
clc;
clear all;
close all;
$\mathrm{s}=15$;
$\mathrm{n}=10$;
$\mathrm{i}=1$;
for $B=0.01: 0.1: 50$
$\mathrm{c}(1, \mathrm{i})=\mathrm{B} * \log (1+(\mathrm{s} /(\mathrm{n} * \mathrm{~B})))$;
$\mathrm{i}=\mathrm{i}+1$;
end
plot(c); grid; \quad \%plots channel capacity versus bandwidth
title('Channel capacity vs Bandwidth')
xlabel('B/(s/n)');
ylabel('Cs');

THEORY:

CALCULATIONS:

DISCUSSION:

ADVANTAGES:

DISADVANTAGES:

APPLICATIONS:

CONCLUSION:

INTERFERENCE:

PRE-EXPERIMENT VIVA-VOCE:

1. State Channel Capacity Theorem.
2. What does the Channel Capacity Theorem state?

POST-EXPERIMENT VIVA-VOCE:

1. What is the practical value of the Channel Capacity?
2. What is the Average Information Rate of the Channel you have considered?
3. What is the rate of channel usage for the channel you have considered?

EXPERIMENT: 18
 AMPLITUDE SHIFT KEYING

AIM:
 1) To write and simulate the MAT Lab code for Phase Shift Keying Technique
 2) To plot the Corresponding Waveforms on the Graph Sheets

APPARATUS:

- PC Installed with Windows XP or higher Version and MAT Lab Software
- Power Supply.

PROCEDURE:

1) Open the MATLAB software by double clicking its icon.
2) MATLAB logo will appear and after few moments Command Prompt will appear.
3) Go to the File Menu and select a New M- file. (File_New_M-file) or in the left hand corner a blank white paper icon will be there. Click it once.
4) A blank M-file will appear with a title "untitled'
5) Now start typing your program. After completing, save the M- file with appropriate name. To execute the program Press F5 or go to Debug Menu and select Run.
6) After execution, output will appear in the Command window .If there is an error then with an alarm, type of error will appear in red color.
7) Rectify the error if any and go to Debug Menu and select Run.

BLOCK DIAGRAM:

CIRCUIT DIAGRAM:

MAT Lab CODE:

```
clc;
clearall;
closeall;
N=8;
Bit_stream=round(rand(1,N));
fs=100;
t=0:(1/fs):1;
fm=1;
fc=1;
datastream =[];
time=[];
carrier_signal=[];
psk_signal=[];
fori= 1:1:length(Bit_stream);
datastream=[datastream (-(Bit_stream(i)==0)*ones(1,length(t))+
(Bit_stream(i)==1)*ones(1,length(t)))];
carrier_signal=[carrier_signal (sin(2*pi*fc*t))];
```

psk_signal=[psk_signal $-(($ Bit_stream $(\mathrm{i})==0) * \sin (2 * \mathrm{pi} * \mathrm{fc} * \mathrm{t}+\mathrm{pi})+$
(Bit_stream $(\mathrm{i})==1) * \sin (2 * \mathrm{pi} * \mathrm{fc} * \mathrm{t}))]$;
time=[time, t];
$\mathrm{t}=\mathrm{t}+1$;
end
subplot(3,1,1);
plot(time,datastream);
axis([0 time(end) -1.5 2])
subplot(3,1,2);
plot(time,carrier_signal);
subplot(3,1,3);
plot(time,psk_signal);
WAVEFORMS:

THEORY:

CALCULATIONS:

DISCUSSION:

ADVANTAGES:

DISADVANTAGES:

APPLICATIONS:

CONCLISION:

INFERENCE:

PRE-EXPERIMENT VIVA-VOCE:

1. Define PSK Modulation.
2. What are advantages of ASK System over FSK and PSK Systems?
3. Draw the Block Diagram of Coherent and Non-Coherent ASK Systems.

POST-EXPERIMENT VIVA-VOCE:

1. Given a bandwidth of 500 Hz for a ASK signal, what are the baud rate and bit rate?
2. Find the minimum bandwidth for a ASK signal transmitting at 1000bps.

RGM COLLEGE OF ENGINEERING AND TECHNOLOGY AUTONOMOUS
 (ESTD. 1995)

Accredited by NAAC of UGC, New Delhi with 'A' Grade

 Nandyal - 518 501. Kurnool (Dist.) A.P.
LABORATORY CERTIFICATE

This is certify that Mr. / Miss......... Praharshini. Regd. No. 200.9140.4C5 of.....II..........year. . end ${ }_{3}$.......... has successfully completed the experiments in. Digital communicatilab of the.... EC.E........ Branch prescribed by the REMCET (Autonomous), Nandyal. for the academic year2022-23

Date 24/6/2023...

Nay 2nto6) 23 Signature of the Internal Examiner

Signature of the External Examiner

RGM COLLEGE OF ENGINEERING AND TECHNOLOGY
(AUTONOMOUS)
(ESTD-1995)
Accredited by NAAC of UGC, New Delhi with 'A' Grade Nandyal-518 501. Kurnool (Dist.) A.P.

INDEX

Exp :- Sampling Theorem
No. O1:-

Circuit Diagram:-

Aim: To study and verify the sampling theorem and reconstruction of sampled wave form.
Apparatus

1. physitech's Sampling Theorem Trainer kit
2. Function Generator.
3. CRO:
4. connecting wires

Theory: Sampling theorem states that if the sampling rate in any pulse modulation system exceeds twice the maximum signal frequency the original signal can be reconstructed in the receiver with minimum distortion.

Set $m(t)$ be a signal whose highest frequency component is f_{m}. Set the value of $m(t)$ be obtained at regular intervals seperated by time T far farces than ($1 / 2 \mathrm{fm}$). The sampling is thus periodically done at each T_{s} seconds. Now the samples m (nit). Where n is an integer which determines the signals uniquely. The signal can be reconstructed from thee samples without distortion.

Time $\left(T T_{S}\right)$ is called the sampling Time. The 1 minimum sampling rate is called NYQUIST RAIE.
R. G. M. College of Engineering and Technology (Autonomous), Nandyal - 518501

Expected Wave form:-

Demodulated signal

The validity of sampling theorem requires rapid sampling rate such that atleast two samples are obtained during the course of the interval corresponding to the highest frequency of the signal under analysis.
Over standard telephone channels the frequency range of A.F is from 300 Hz to 3400 Hz . For this application the sampling rate taken is 8000 samples per second. This is an international standard.

Procedure

1. Connections are made as per the circuit diagram
2. Apply the input signal roith a frequency of $-1 \mathrm{k}+1 / 5$ using a function generator.
3. Sampling clock frequency which is variable of 500 Hz to 5 KHz ghoul be connected across the terminals which is indicated.
4. Now observe the sampling output of the circuit at the op.
5. By using the capacitors provided on the trainer, reconstruct the signal and verify it with the given input.
6. Reconstructed signal voltage will be depends on capacitor value.
7. Vary the sampling frequency and study the change in reconstructed signal.

Observation $\quad P \leq 2 F_{m}:-$
Message signal:-
Amplitude $=1 \times 2 \mathrm{~V}=2 \mathrm{~V}$
Time period $=1 \times 50 \mathrm{us}$
Frequency $=20 \mathrm{KHZ}$
clock signal:-
Amplitude $=1.2 \times 2 \mathrm{~V}=2.4 \mathrm{~V}$
Time period $=0.8 \times 1 \mathrm{~ms}$
Frequency $=1.25 \mathrm{KHz}$
Sample output:-
Amplitude $=2 \times 2 \mathrm{~ms}$
Time period $=2 \times 1 v=2 v$
Frequency $=250 \mathrm{~Hz}$
Demodulated signal:-
Amplitude $=4.2 \times 5.6 \mathrm{~V}$
Time period $=3 \times 1 \mathrm{~ms}$
Frequency $=333.3 \mathrm{~Hz}$
$\underline{\underline{f_{s}}>2 f_{m}:-}$
Message signal:-
Amplitude $=1 \times 2 \mathrm{~V}=2 \mathrm{~V}$
Time period $=1 \times 50 \mathrm{us}$
Frequency $=20 \mathrm{kH} / \mathrm{z}$
clock signal :-
Amplitude $=1.2 \times 2 \mathrm{~V}=2.4 \mathrm{~V}$
Time period $=0.8 \times 1 \mathrm{~ms}$
Frequency $=1.25 \mathrm{KHz}$

Sample output:-
Amplitude $=1.8 \times 1 \mathrm{~V}$
lime period $=1.2 \times 1 \mathrm{~ms}$
Frequency $=833.3 \mathrm{~Hz}$

$$
f_{s}=2 f_{m:}^{-}
$$

Sample output:-

$$
\text { Amplitude }=2 \times 1 \mathrm{~V}=2 \mathrm{~V}
$$

$$
\text { Time period }=3 \times 0.5 \mathrm{~ms}
$$

Frequency $=666.66 \mathrm{tzz}$

Demodulated signal:-
Amplitude $=0.5 \times 5 \mathrm{v}=2.5 \mathrm{~V}$
Time period $=1.2 \times 1 \mathrm{~ms}$
Frequency $=833.3 \mathrm{~Hz}$

Demodulated Signal:-
Amplitude $=1.6 \times 1 \mathrm{~V}=1.6 \mathrm{~V}$
Time period $=3 \times 0.5 \mathrm{~ms}=1.5 \times 10^{-2}$
Frequency $=666.66 \mathrm{~Hz}$

Result:Hence conducted the sampling Theorem and obtained the corresponding wave forms.

(중 R.G.M. College of Engineering and Technology (Autonomous), Nandyal - 518501

$$
\text { ESTD : } 1995
$$

Exprno: Delta Modulation and Dellodulation

Block diagrams:-

(a) Transmitter (DM)

(b) Receiver (DM)

Expected wave forms:-

form is delta (Δ).
The delta demodulator includes a delay circuit a LJPF and a summer. A LPF is included in the che. For noise elimination and to obtain better opP of band signals. Granular Noise is eliminated at the transmitter and when zero noise is seen, then the output of the modulator is equal to the demodulator input.

Procedure:

1. The DM trainer kit yous switched on.
2. The Modulated signal and the clock signal were observed on oscilloscope and the modulating signal and the clock signal were applied as il to the delta modulator.
3. Then the quantized signal was observed on the oscilloscope, the step size was calculated. i.e., stepheight and the step width.
4. The delta modulated signal was observed at the output of DM circuit and the bit duration sequence and amplitude of the DM of were noted down.
5. The corresponding readings of modulating signal and clock signal were noted down (amplituck Frequency time).
6. The corresponding waveforms were plotted on graph sheet.
R. G. M. College of Engineering and Technology (Autonomous), Nandyal - 518501

Observa-Lions:-

Modulating signal:
Amplitude $=1 \times 10 \mathrm{~V}=10 \mathrm{~V}$
Time period $=2 \times 0.5 \mathrm{~ms}=1 \mathrm{~ms}$
Frequency $=1 \mathrm{kHz}$
clock:-
Amplitude $=1 \times 5 \mathrm{v}=5 \mathrm{v}$
Time period $=2 \times 5 \mathrm{us}=10 \mathrm{us}$
Frequency $=200 \mathrm{KHz}$
Quantized (stair case):-
stepwidth $=0.8$
step height $=0.3$
DM output:-
Amplitude $=2.2 \times 2 \mathrm{~V}=4.4 \mathrm{~V}$
Time period $=2 \times 0.5 \mathrm{~ms}=1 \mathrm{~ms}$
Frequency $=1 \mathrm{kHz}$
Demodulated Signal :-
Amplitude $=2 \times 5 \mathrm{~V}=10 \mathrm{~V}$
Time period $=2 \times 0.5 \mathrm{~ms}=1 \mathrm{~ms}$
Frequency $=1 \mathrm{kHz}$
Calculation

1. Step width $\left(T_{s}\right)=0.8 \times 1 \mathrm{~ms}$
2. step height $(\delta)=0.3 \times 1 \mathrm{~V}$

$$
f_{m}=1 \mathrm{KHz}
$$

$$
\begin{aligned}
\text { Signal to Quantization Noise ratio } & =\frac{3}{8 \pi^{2}-\mathrm{m}^{2} T_{\mathrm{s}}^{2}} \\
& =\frac{3}{8 \pi^{2}(1 \mathrm{k})^{2}(0.8 \times 1 \mathrm{~m})^{2}} \\
& =59.36
\end{aligned}
$$

Result:- Hence we conducted the experiment of delta Modulation and demodulation and obtained the correspond ing wave form.

Expt :- psk Modulation \& DeModulation
No:03:

Block DPagrams:-
(a) Psk Transmitter:-

(b) PSK Receiver:-

Supt

Aim:- Y. To accquire the practical knowledge of psk Modulation and Demodulation.
2. To calculate the error probability of PSK system, Baud rate and Band rate.
3. plot the corresponding waveforms on the graph sheets.
Apparatus 1. psk Modulation and Demodulation kit
2. Digital storage oscilloscope/CRo
3. probes
4. patch chords
5. Adapter

Theory:
Psk is a type of phase modulation in which the phase of the carrier changes in accordance with the input data. Keeping amplitude and Frequency of carrier constant. This is also called
2- phase psk or phase reversal keying.
The modulation of BPSK is done using a product modulator, which multiplies the two signals. applied at the input i.e., carrier wave and binary sequences. For zero binary input the phase will be 0 and for high input, the phase reverse
R. G. M. College of Engineering and Technology (Autonomous), Nandyal - 518501

Expected Wave Forms:-
Message signal Demodulated signal

of 180°. To detect the original binary sequence of zeros and ones, we apply the noisy pst signal to a correlator. The correlator output is connected and compared with a threshold of zero volts.

Procedure:

1. The pst trainer kit was switched on.
2. The carrier signal and the data was observed on the CRO/DSO, their corresponding readings were noted down.
3. The data was applied as input to the psk Modulator.
4. At the output terminal of the demodulator the psk was observed and its readings such as amplitude, mark frequency and space frequency were noted down.
5. It the input terminal of the psk demodulator the pSk signal was applied.
6. The demodulated signal could be obtained by tuning the circuit it was observed on the oscilloscope and its corresponding readings such as amplitude, bit duration and the data sequence were noted down.
7. The error probability, baud rate and the band width of the psk signal were calculated. 8. The corresponding wave forms were plotted on graph sheets.
Data:

$$
\begin{aligned}
& \text { Observati Amplitude }=1 \times 5 \mathrm{~V}=5 \eta \\
& \text { On:- } \begin{aligned}
\text { Bit duration, } \mathrm{tb}=1 & \rightarrow 1 \times 50 \mathrm{us}=50 \mathrm{us} \\
& 0 \rightarrow 1 \times 50 \mathrm{us}=50 \mathrm{us}
\end{aligned}
\end{aligned}
$$

Carrier Signal.
Amplitude $=3 \times 2 \mathrm{v}=6 \mathrm{v}$
-time period $=1.2 \times 50 \mathrm{us}=60 \mathrm{ls}$
Frequency $=16.66 \mathrm{kHz}$
PSK Signal:
Amplitude $=2.9 \times$ INv $=5.8 \mathrm{~V}$
time period $=1.2 \times 50 \mathrm{us}=60 \mathrm{us}$
Frequency $=16.66 \mathrm{kHz}$
Demodulated op:-
Amplitude $=2 \times 2 \mathrm{~V}=4 \mathrm{~V}$
Bit duration, $\begin{aligned} \mathrm{t} b=1 & \longrightarrow 1 \times 50 \mathrm{us}=50 \mathrm{us} \\ 0 & \rightarrow 1 \times 50 \mathrm{us}=50 \mathrm{us}\end{aligned}$

Result:-
Hence conducted the psk modulation and demodulation and obtained the corresponding waveforms.

Exp:- Frequency shift Keying Modulation
No:04:and Demodulation

Block diagram:-
(a) FSK Transmitteri-

b) FSK Receiver:-

Expected WaveForms:-

Amp
Demodulated signal

Output waveform during transmission of the message.
In order to detect the original binary sequence given the noisy received wave $x(t)$. we may use the receiver. It consists of two correlatorn with a common input which are supplied with locally generated coherant refrence signals $Q_{1}(t)$ and $Q_{2}(t)$. The correlator outputs are then Subtracted, one from other and the resulting difference, 2_{1} is compared with a threshold of 0 volts.

1. The FSK trainer kit was switched on.

Procedure t 2. The carrier signal and the data was observed on the CRO/DSO, their corresponding readings were noted down.
3. The data was applied as input to the FSK modulator.
4. At the output terminal of the modulator the Fisk output was observed and its readings such as amplitude, frequency time period were noted down.
5. At the input terminal of FSK demodulator the Fisk Signal were applied.
6. The demodulated signal could be obtained by tuning the circuit. It was observed on the oscilloscope and its corresponding readings such
R. G. M. College of Engineering and Technology (Autonomous), Nandyal $\mathrm{J}_{518} 501$
as amplitude, bit duration and the data sequene were noted down.
7. The error probability, baud rate, modulation index, and the band width of the signal were calculated.
8. The corresponding wave forms were plotted on graph sheets.

Data:
Observa-
trons:-
Amplitude $=2.2 \times 2 \mathrm{~V}=4.4 \mathrm{~V}$
Frequency $=869.565$
lime period $=2.3 \times 0.5 \mathrm{~ms}=1.15 \times 10^{-3}$
clock:
Amplitude $=2 \times 1 \mathrm{~V}=2 \mathrm{~V}$
Frequency $=16.66 \times 10^{-3}$
Time period $=0.6 \times 0.1 \mathrm{~ms}$
FSh signal:
Amplitude $=2.5 \times 2 \mathrm{~V}=5 \mathrm{~V}$
Mark time period $=0.2 \times 0.5 \mathrm{~ms}=1 \times 10^{-4} \mathrm{~s}$
Mark frequency $=10 \mathrm{KHz}$
space time period $=0.8 \times 0.5 \mathrm{~ms}=4 \times 10^{-4} \mathrm{~S}$
space frequency $=2.5 \times 10^{-3}$

Demodulated Signal:
Amplitude $=1.6 \times 5 \mathrm{~V}=8 \mathrm{~V}$
Time period $=2 \times 0.5 \mathrm{~ms}$
Frequency $=1 \times 10^{3} \mathrm{~Hz}$
Result:-
Hence conducted the FSK Modulation x demodulation and obtained corresponding wave forms

ESTD-1995)

$$
\begin{aligned}
& \text { Scale } \\
& \times \text { axaisionit } \rightarrow 6 \times i 0^{5}
\end{aligned}
$$

40 \&

$$
\rightarrow \text { yaxis ionit } \rightarrow 1 \mathrm{~V}
$$

Block diagram:-
(a) Ask Transmitter:

(b) ASK Receiver:

Apparatus

1. Ask Modulation and demodulation Kit
2. DSO|CRO
3. patch chords
4. CRO probes

Theory
Ask is a type of amplitude modulation in which the amplitude of the carrier changes in accordance with the input data keeping frequency \& phase at carrier input for carrier constant. The binary Signal when Ask modulated gives the zero value for low input while it gives the carrier input for high input.
In the generation, the base band signal $F_{b}(t)$ is multiplied by any periodic signal $s(t)$. so that result is as follows.

$$
x(t)=r_{b}(t) \delta(t)
$$

R. G. M. College of Engineering and Technology (Autonomous), Nandyal - 518501

Expected wave forms:

The product $x(t)$ contains a series of AM waves with carrper-frequencies that are harmonic multiples of the fundamental frequency fo. A BPF is used to Extract any of the harmonics, thus generating ASK signal. The attenuation can be recovered.

1. Ask trainer kit was switched on.

Procedure 2. The carrier signal and data signal was observed on CROLDSO, their corresponding readings were noted docon.
3. The data was applied as input to the ASK modulation.
4. At the output terminal of the modulator to the ASk output was observed and its readings such as amplitude, mark frequency and space Frequency were noted down.
5. At input terminal of ASK demodulator the ASK signal was applied.
6. demodulated signal could be obtained by tuning the circuit it was observed on the oscilloscope 4. The error probability baud rate k the band width of Ask signal were calculated.
8. The corresponding waveforms plotted on the graph sheet.
R. G. M. College of Engineering and Technology (Autonomous), Nandyal - 518501

Observation Data:
frequency $=156.25 \mathrm{~Hz}$
Amplitude $=1.6 \times 2 \mathrm{~V}=3.2 \mathrm{~V}$
Bit duration $=3.2 \times 2 \mathrm{~ms}=6.4 \mathrm{~ms}$
Carrier signal:
Amplitude $=3.6 \times 2 \mathrm{~V}=7.2 \mathrm{~V}$
Time period $=2 \times 1 \mathrm{~ms}=2 \mathrm{~ms}$
Frequency $=500 \mathrm{~Hz}$
Ask signal:
Amplitude $=1.6 \times 2 y=3.2 \mathrm{~V}$
lime period $=16 \times 2 \mathrm{~ms}=2.4 \mathrm{~ms}$
Frequency $=416.66 \mathrm{~Hz}$
Demodulated op:
Amplitude $=3.2 \mathrm{~V}$
Bit duration $=3.2 \times 2 \mathrm{~ms}=6.4 \mathrm{~ms}$

Result:-
Hence conducted the ASK modulation and demodulation and obtained corresponding waveforms.

Amp(v) Ask Modulation \& Demodulation

Block diagram:-
Ask Modulator:-

carrier Signal

Exp No
Amplitude Shift Keying
dim:- To write a MATLAB code for Amplitude shift Keying.
Apparatus 1. Computer system
Software:- MATLAB 7.0 .4
Theory:- Amplitude shift keying is a type of Amplitude Modulation which represents the binary data in the form of variations in the amplitude of the signal.

Any modulated signal has a high frequency Carrier. The binary signal when ASk modulated gives a "zero" value for "Low" input while it gives a carrier output for high input.

The Ask modulator block diagram comprises of the carrier signal generator, the binary sequence From the message signal and the band limited fitter. The carrier generator, sends a continuous high -frequency carrier. The binary sequence from the message signal makes the unipolar input to be either High (or) Low.
R. G. M. College of Engineering and Technology (Autonomous), Nandyal - 518501

Hence the output roil be the carrier signal at high input. when there is 20 input the switch opens, allowing no voltage to appear. Fence the output $20 i l l$ be 200.

1) Switch on the computer system

Procedure
2) Go to MATLAB icon and click on it
3) create new blank file in the MATLAB
4) Save the file with m Extension and write the MATLab code for the corresponding Experiment.
5) Then save the code x run the code.
6) if there is any errors, rectify it
7) observe the corresponding wave forms on figure window, draw it.
che;
CODE:- clearall;
close ate:

$$
n=8
$$

bit stream $=$ round $(\operatorname{rand}(1, n))$;
$f_{s}=1000$;

$$
t=0: 1 / f S: 1
$$

$$
f_{1}=1 ;
$$

data stream $=[]$;
lime = [];
ask signal $=[]$;
R. G. M. College of Engineering and Technology (Autonomous), Nandyal - 518501

Wave forms:-

Message signal

Ask signal

for $P=1:$ length (bit stream)
data stream $=[$ datastream $($ bit stream $(P)=0) *$

$$
\text { zeros }(1 \text {, length }(t))+(\text { bit stream }(q)==1) *
$$ ones (1 , length (t))];

ask signal $=[$ ask signal (bitstream $(P)=0)$ *

$$
\text { zeros }(1 \text {, length }(t))+(\text { bitstream }(P)==1)
$$

time $=[$ time,$t]$

$$
t=t+1
$$

end
Subplot $(2,1,1)$;
plot (time, datastream);
xlabel ('time');
ylabel ('amplitude');
axis ([0 time(end) $-1.51 .5]^{2}$);
grid on;
subplot ($2,1,2$);
plot (time, ask signal);
label ('time');
ylabel ('amplitude');
title ('Amplitude shift Keying'); axis ([0 time(end) $-1.51 .5]$),
grid one,

Result:- Hence MATLAB code for Amplitude shift keying was performed by using matlab software and obtained the wave forms.

Amplitude shift Keying (Ask)

4.05

Exp No:(02)	Frequency Shift keying (FSK)	Date
$17 / 4 / 23$		

Nim:- To write a matlab code for frequency shift Keying by using matlab software.
Apparates computer system
Software MATLAB 7.0 .4 software
This frequency shift keying theory of a binary signal changed according to the carrier signal. In Fsk, the binary information can be transmitted through a carrier signal. In Fsk, the binary in formation can be transmitted through a carrier signal along with frequency changes.

In fisk, two carriers are used to produce fisk modulated coaveforms. The reason behind this, Ask modulated signals are represented in terms of two different frequencies.

The frequency are called "mark Frequency" and "Space frequency". (O)
fisk is a type of frequency modulation in which Frequency of carrier changes in accordance with the input data keeping amplitude \& phase of carrier constant.
R.G.M. College of Engineering and Technology (Autonomous), Nandyal - 518501

Block diagram:-

Procedure 2) Go to matlab icon \& click on it.
3) create new bank file on the matlab.
4) Save the file with mextension \& conte the mat tab code for the corresponding experiment
5) Then save the coder run the code.
6) If there is any errors, rectify it.
7) observe the corresponding wave forms $\&$ draw it

Code:che;
clear all;
close all;
$n=8$;
bit stream $=$ round $($ rand $(1, n))$;
$f_{s}=1000$;
$t=0: 1 / \mathrm{Fs}_{\mathrm{s}:} 1$,

$$
f_{1}=1 \text {, }
$$

$P_{2}=3$;
time $=[]$;
fisk signal $=[]$;
data stream $=[]$;
for $i=1$: length (bitstream);
datastream $=[$ datastream $($ bit stream $(q)==0) *$ *

$$
\begin{gathered}
m=[\text { datastream }(1, \text { length }(t))+(\text { bitstream }(i)=1) * \\
\text { zeros }(1 \text { length }(t))] ;
\end{gathered}
$$

ones (1, length $(t))$;

Expected waveforms:-

FSK signal

Ask signal $=[$ Psksignal $($ bitstream $(P)=0) * \sin (2 *$ pi

$$
\begin{aligned}
& \left.\left.* f_{1} * t\right)\right)+(\text { bitstream }(i)==1) * \sin \\
& \left.\left.\left(2 * p_{i} * f_{2} * t\right)\right)\right] ;
\end{aligned}
$$

time $=[$ time,$t]$; (2*pi*f2*t)) ;
$t=t+1$;
end
subplot $(2,1,1)$
plot (time, datastream);
label ('time');
ylabel ('Amp');
axis ($\left[\begin{array}{llll}0 & \text { time (end) } & -1.5 & 1.5\end{array}\right]$);
grid on:
subplot $(2,1,2)$
plot (time, tisksignal);
xlabel ('time');
ylabel ('Amp';
title ('Fsk Signal');
axis ([o time(end) -1.5 1.5]);
grid on;
Result
Hence executed the frequency shift keying (FSK) by using matlab software and obtained the loveforms.

Frequency shift Keying (FSK)

$\underbrace{2}$
4.5

Exprino

Aim:- To write a mATLAB code-for phase shift keying by using matlab software.
Apparatus computer system
software MATLAB 7×0.4

Theory:-
The phase shift keying is one kind of digital modulation method. This Kind of method is used to transmit data by modulating offerroise changing the phase of the cannier signal, which is known as a reference signal. The digital data can be represented with any kind of digital modulation method by using limited no. of seperate signals. This Kind of modulation method uses a limited no. of phase where each phase can be assigned with binary digits.

Generally, Every phase Encodes an equivalent no. of bits. Every bits pattern form the symbol that is denoted by the Exact phase.

1) Switch on the computer system.

Procedure 2) Go to matlab icon se click on it.
3) create new bank pile on the matlab.
4) Save the file with extension \& write the

Block diagram:-

matlab code for the corresponding experiment
5) Then save the code k run the code.
6) If there is any Errors, rectify it.
4) observe the corresponding coave-forms and draw it

Code:-
close;
clear all;
close all;
$n=8$;
bitstream $=$ round $(\operatorname{rand}(1, n))$;
$f_{S}=1000$;

$$
t=0: 1 / f s: 1 \text {, }
$$

datastream $=[7$;
time $=[]$;
PSK signal $=[]$;
For $i=1$: length (bi tstream)
datastream $=[$ datastream $($ bitstream (i) $(9)=0) \times f$
$\operatorname{zeros}(1$, length $(t))+($ bit stream $(Q)==1) *$ ones (1 , length (t))];
Psk signal $=[$ psk signal $\cdot(($ bit stream $(P)==0) *$

$$
\sin (2 * \text { pi*f*t })+(\text { bitstream }(i)=1) *
$$

$\sin (2 * p i * f * t+p q))$;

$$
\text { time }=[\text { time }, t]
$$

$$
t=t+1 ;
$$

end
Subplot $(2,1,1)$
plot (time, datastream),

Wave forms:-

Ask signal

x label ('time); ylabel ('Amp);
axis ([0 time(end) $-1.51 .5])$;
grid on;
subplot $(2,1,2)$
plot (time, psksignal);
xlabel ('time');
y label ('Amp');
axis ($[0$ time (end) $-1.51 .57]$);
grid on;
Result:- Hence, executed the phase shift keying (psk) by using matlab software and obtained the wave forms.
phase shift keying (psk)

ExpTNo
Delta Modulation \& Demodulation

Nim:- To rorite a MAT LAB code for delta modulation and draw the waveforms.

Apparatus Computer system with MATLAB software
Theory In delta modulation the base band signal is over sampled. If the approximation value in below to $x(t)$ then it gets increased by A and if the approximation value is above $x(t)$ then it gets decreased by Δ one step size of the quantizer is given an $D=2 \delta$.

This process all is alone in delta modulation transmitter.
a sampled input is given to one bit quantizer and it produces the in two forms
i) output without Feedback
ii) output with feedback

DM is the simplest form of DPCM where the difference between successive samples is encoded into n-bit data streams. In delta modulation, the transmitted data are reduced to a $\&$-bit data stream.

Block Diagram:-

- Accumulator
a) Transmitter (DM)

b) Receiver (D MA)

Procedure

1) Switch on the computer System
2) Go to matlab icon \rightarrow Go to file \rightarrow select blank $^{\text {a }}$ m-file.
3) Now finer matLAB code in the New file.
4) Then save the file with m Extension.
5) Now debug the code and run the code if any errors occurs rectify the error
6) observe the cave forms in figure.
7) Note down the corresponding coaveforms.

Program
code:-
che;
clear all;
close all;

$$
\begin{aligned}
& a=2 ; \\
& t=0: 2 * p_{i} / 50: 2 * p_{i} ; \\
& x=a * \sin (t) ;
\end{aligned}
$$

$$
l=\text { length }(x) \text {; }
$$

plot ($x, r^{\prime} r^{\prime}$;
delta $=0.2$;
hold on;

$$
x_{n}=0 ;
$$

for $i=1: l$;
if $x(i)>x n(i)$

$$
d(i)=1 ;
$$

else

$$
x n(i+1)=x n(i)+\text { delta: }
$$

$$
d(\varphi)=0 ;
$$

$$
x n(i+1)=x_{n}(\beta)-\text { delta; }
$$

Exp
NO (4)
Sampling Theorem
Aim:- To write a mATLAB cade for sampling theorem by using matlab software.
Apparatus personal computer with matlab software.
Theory:-
sampling theorem essentially says that a signal has to be sampled at least with twice the frequency of the original signal. The sampling theorem indicates that a continuous signal can be properly sampled, only if it does not contain frequency components above one-half of the sampling rate.

It retains accuracy in bringing out the correct statistical information. The population tree is a huge set and it returns out to be exhausting for the actual study and estimation process.

In sampling theorem Nyquist sampling theorem underlies all situations where continuous signals are sampled and is especially important where pattern are to be digitized and analyzed by computer: Analog information must be transformed into a digital format, process starts with sampling the coaveform to produce a discrete pulse-amp-modutated. -518501

continuous time signal

Discrete time signal with ($f_{s}<2 \mathrm{fm}_{m}$).

Discrete time signal with

$$
\left(f_{S}=2 f m\right)
$$

Discrete time Signal with $\left(T_{s}>2 \mathrm{~m}_{\mathrm{m}}\right)$

Procedure
i) switch on the computer system
2) Go to matlab icon \rightarrow GO to file \rightarrow select blank Mile.
3) Now Enter MATLA B code in the New file
4) Then save the file with extension.
5) Now debug the code and run the code if any errors occurs rectify the error
6) observe the cave forms in figure
-7) Note down the corresponding wave forms.
Program
Code:-
cleo;
clear all;
close all;

$$
\begin{aligned}
& t=-10: 0.01: 10 ; \\
& f_{m}=0.125 ; \\
& x=\cos \left(2 * \text { pi* } f_{m} * t\right) ;
\end{aligned}
$$

Subplot $(2,2,1)$;
plot (t, x);
label ('Time in seconds');
y label (' $x(t)^{\prime}$);
title ('continuous time signal');

$$
\begin{aligned}
& f_{s 1}=1 * f_{m} ; \\
& f_{s 2}=2 * f_{m} ; \\
& f_{s 3}=8 * f_{m} ; \\
& n_{1}=-2: 1: 2 \\
& x_{n_{1}}=\cos \left(2 * p_{i} * n_{1} * f_{m} \mid f_{s}\right) ; \\
& \text { subplot }(2,2,2) ;
\end{aligned}
$$

R.G.M. Cdlege of Engineering and Technology (Autonomous), Nandyal - 518501

Block diagram:-

$\operatorname{stem}\left(n, x n_{1}\right)$;
hold on;
plot $\left(x_{1}, x_{n_{1}}\right)$;
label (' n ') ;
label ('x(n)');
title ('Discrete time signal with $f_{s}<2 \mathrm{fm}$);

$$
n_{2}=-5: 1 ; 5 ;
$$

$x n_{2}=\cos \left(2 * p_{1} * n_{2} * f_{m} \mid f_{\mathrm{s}_{2}}\right) ;$
subplot $(2,2,3)$;
stem ($n, x, n 2$);
hold on:
plot (n2,xn2);
label (' n ') ;
ylabel ($\left.{ }^{\prime} x(x)^{1}\right)^{1}$;
title ('Discrete time signal with $f_{s}=2 \mathrm{fm}$);

$$
n_{3}=-15: 1: 15
$$

$$
x n_{3}=\cos \left(2 * p_{1} * n_{3} * \operatorname{tm} \mid+\rho_{3} 3\right) ;
$$

subplot $(2,2,4)$;
$\operatorname{stem}(n, x n 3)$;
hold on;
plot $\left(n_{3}, x n_{3}\right)$;
label (n^{\prime} ');
ylabel ($\left.{ }^{\prime} x(n)^{\prime}\right)$;
Lithe ('Discrete time signal with $f_{S}>2 \mathrm{fm}_{\mathrm{m}}$);
Result:- Hence verified the sampling theorem by using matlab software and obtained the waveforms.

CO- PO ATTAINMENT PROCESS

Academic Year	2022-23						
Regulations	R20						
Year	III	Sem	II				
Batch	20						
Branch	ECE						
Subject(Code)	DC LAB						
Name of the Faculty	MAHESWARI M						
Reg.No.	Final Internal marks(25)	Total Final Marks(75)	External Marks(50)	N CO 1	N CO 2	N CO 3	N CO 4
20091A0402	24	69	45	92	92	92	92
20091A0404	23	67	44	$\begin{gathered} 89.333 \\ 33 \\ \hline \end{gathered}$	$\begin{gathered} 89.3333 \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} 89.3333 \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} 89.3333 \\ 3 \\ \hline \end{gathered}$
20091A0408	22	70	48	$\begin{gathered} 93.333 \\ 33 \\ \hline \end{gathered}$	$\begin{gathered} 93.3333 \\ 3 \end{gathered}$	$\begin{gathered} 93.3333 \\ 3 \end{gathered}$	$\begin{gathered} 93.3333 \\ 3 \end{gathered}$
20091A0419	24	64	40	$\begin{gathered} 85.333 \\ 33 \\ \hline \end{gathered}$	$\begin{gathered} 85.3333 \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} 85.3333 \\ 3 \end{gathered}$	$\begin{gathered} 85.3333 \\ 3 \\ \hline \end{gathered}$
20091A0435	23	69	46	92	92	92	92
20091A0436	23	68	45	$\begin{gathered} 90.666 \\ 67 \\ \hline \end{gathered}$	$\begin{gathered} 90.6666 \\ 7 \\ \hline \end{gathered}$	$\begin{gathered} 90.6666 \\ 7 \\ \hline \end{gathered}$	$\begin{gathered} 90.6666 \\ 7 \\ \hline \end{gathered}$
20091A0437	23	67	44	$\begin{gathered} 89.333 \\ 33 \end{gathered}$	$\begin{gathered} 89.3333 \\ 3 \end{gathered}$	$\begin{gathered} 89.3333 \\ 3 \end{gathered}$	$\begin{gathered} 89.3333 \\ 3 \end{gathered}$
20091A0439	24	69	45	92	92	92	92
20091A0450	24	70	46	$\begin{gathered} 93.333 \\ 33 \end{gathered}$	$\begin{gathered} 93.3333 \\ 3 \end{gathered}$	$\begin{gathered} 93.3333 \\ 3 \end{gathered}$	$\begin{gathered} 93.3333 \\ 3 \end{gathered}$
20091A0466	24	72	48	96	96	96	96
20091A0469	24	71	47	$\begin{gathered} \hline 94.666 \\ 67 \\ \hline \end{gathered}$	$\begin{array}{\|c} \hline 94.6666 \\ 7 \\ \hline \end{array}$	$\begin{gathered} 94.6666 \\ 7 \\ \hline \end{gathered}$	$\begin{gathered} 94.6666 \\ 7 \\ \hline \end{gathered}$
20091A0470	24	71	47	$\begin{gathered} 94.666 \\ 67 \end{gathered}$	$\begin{gathered} 94.6666 \\ 7 \end{gathered}$	$\begin{gathered} 94.6666 \\ 7 \end{gathered}$	$\begin{gathered} 94.6666 \\ 7 \end{gathered}$
20091A0471	24	71	47	$\begin{gathered} 94.666 \\ 67 \end{gathered}$	$\begin{gathered} 94.6666 \\ 7 \end{gathered}$	$\begin{gathered} 94.6666 \\ 7 \\ \hline \end{gathered}$	$\begin{gathered} 94.6666 \\ 7 \end{gathered}$
20091A0472	23	71	48	$\begin{gathered} 94.666 \\ 67 \\ \hline \end{gathered}$	$\begin{gathered} 94.6666 \\ 7 \end{gathered}$	$\begin{gathered} 94.6666 \\ 7 \\ \hline \end{gathered}$	$\begin{gathered} 94.6666 \\ 7 \\ \hline \end{gathered}$

20091A0475	24	72	48	96	96	96	96
				97.333	97.3333	97.3333	97.3333
20091A0478	24	73	49	33	3	3	3
20091A0479	22	69	47	92	92	92	92
				74.666	74.6666	74.6666	74.6666
20091A0480	22	56	34	67	7	7	7
20091A0488	24	69	45	92	92	92	92
				86.666	86.6666	86.6666	86.6666
20091A0490	22	65	43	67	7	7	7
				94.666	94.6666	94.6666	94.6666
20091A0497	23	71	48	67	7	7	7
				93.333	93.3333	93.3333	93.3333
20091A04A3	22	70	48	33	3	3	3
				86.666	86.6666	86.6666	86.6666
20091A04C1	22	65	43	67	7	7	7
20091A04C4	24	72	48	96	96	96	96
				97.333	97.3333	97.3333	97.3333
20091A04C9	24	73	49	33	3	3	3
20091A04D3	22	69	47	92	92	92	92
				89.333	89.3333	89.3333	89.3333
20091A04D7	19	67	48	33	3	3	3
20091A04D9	22	66	44	88	88	88	88
				94.666	94.6666	94.6666	94.6666
20091A04E0	24	71	47	67	7	7	7
				94.666	94.6666	94.6666	94.6666
20091A04E5	24	71	47	67	7	7	7
20091A04E6	22	66	44	88	88	88	88
20091A04E7	24	72	48	96	96	96	96
20091A04E8	23	66	43	88	88	88	88
20091A04E9	24	72	48	96	96	96	96
				93.333	93.3333	93.3333	93.3333
20091A04F1	24	70	46	33	3	3	3
				97.333	97.3333	97.3333	97.3333
20091A04F8	24	73	49	33	3	3	3
				89.333	89.3333	89.3333	89.3333
20091A04F9	23	67	44	33	3	3	3
				94.666	94.6666	94.6666	94.6666
20091A04G0	23	71	48	67	7	7	7
20091A04G1	24	69	45	92	92	92	92
				90.666	90.6666	90.6666	90.6666
20091A04G2	23	68	45	67	7	7	7
				97.333	97.3333	97.3333	97.3333
20091A04G3	24	73	49	33	3	3	3
20091A04G5	23	69	46	92	92	92	92
20091A04H5	24	72	48	96	96	96	96
20091A04H7	24	68	44	90.666	90.6666	90.6666	90.6666

				67	7	7	7
20091A04H8	24	69	45	92	92	92	92
20091A04H9	24	73	49	$\begin{gathered} 97.333 \\ 33 \end{gathered}$	$\begin{gathered} 97.3333 \\ 3 \end{gathered}$	$\begin{gathered} 97.3333 \\ 3 \end{gathered}$	$\begin{gathered} 97.3333 \\ 3 \end{gathered}$
20091A04J0	24	71	47	$\begin{gathered} 94.666 \\ 67 \\ \hline \end{gathered}$	$\begin{gathered} 94.6666 \\ 7 \\ \hline \end{gathered}$	$\begin{gathered} 94.6666 \\ 7 \\ \hline \end{gathered}$	$\begin{gathered} 94.6666 \\ 7 \\ \hline \end{gathered}$
20091A04J3	24	67	43	$\begin{gathered} 89.333 \\ 33 \end{gathered}$	$\begin{gathered} 89.3333 \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} 89.3333 \\ 3 \end{gathered}$	$\begin{gathered} 89.3333 \\ 3 \end{gathered}$
20091A04J9	24	70	46	$\begin{gathered} 93.333 \\ 33 \\ \hline \end{gathered}$	$\begin{gathered} 93.3333 \\ 3 \end{gathered}$	$\begin{gathered} 93.3333 \\ 3 \end{gathered}$	$\begin{gathered} 93.3333 \\ 3 \end{gathered}$
20091A04K1	24	73	49	$\begin{gathered} 97.333 \\ 33 \\ \hline \end{gathered}$	$\begin{gathered} 97.3333 \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} 97.3333 \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} 97.3333 \\ 3 \\ \hline \end{gathered}$
20091A04K5	24	70	46	$\begin{gathered} 93.333 \\ 33 \\ \hline \end{gathered}$	$\begin{gathered} 93.3333 \\ 3 \end{gathered}$	$\begin{gathered} 93.3333 \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} 93.3333 \\ 3 \end{gathered}$
20091A04K6	24	72	48	96	96	96	96
20091A04M3	24	73	49	$\begin{gathered} 97.333 \\ 33 \end{gathered}$	$\begin{gathered} 97.3333 \\ 3 \end{gathered}$	$\begin{gathered} 97.3333 \\ 3 \end{gathered}$	$\begin{gathered} 97.3333 \\ 3 \end{gathered}$
20091A04M7	24	68	44	$\begin{gathered} 90.666 \\ 67 \end{gathered}$	$\begin{gathered} 90.6666 \\ 7 \end{gathered}$	$\begin{gathered} 90.6666 \\ 7 \\ \hline \end{gathered}$	$\begin{gathered} 90.6666 \\ 7 \\ \hline \end{gathered}$
20091A04M9	24	72	48	96	96	96	96
20091A04N6	22	67	45	$\begin{gathered} 89.333 \\ 33 \\ \hline \end{gathered}$	$\begin{gathered} 89.3333 \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} 89.3333 \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} 89.3333 \\ 3 \\ \hline \end{gathered}$
20091A04N7	24	69	45	92	92	92	92
20091A04P0	22	70	48	$\begin{gathered} 93.333 \\ 33 \\ \hline \end{gathered}$	$\begin{gathered} 93.3333 \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} 93.3333 \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} 93.3333 \\ 3 \\ \hline \end{gathered}$
20091A04P8	23	71	48	$\begin{gathered} 94.666 \\ 67 \\ \hline \end{gathered}$	$\begin{gathered} 94.6666 \\ 7 \\ \hline \end{gathered}$	$\begin{gathered} 94.6666 \\ 7 \\ \hline \end{gathered}$	$\begin{gathered} 94.6666 \\ 7 \\ \hline \end{gathered}$
21095A0404	24	72	48	96	96	96	96
21095A0412	24	71	47	$\begin{gathered} 94.666 \\ 67 \end{gathered}$	$\begin{gathered} 94.6666 \\ 7 \end{gathered}$	$\begin{gathered} 94.6666 \\ 7 \end{gathered}$	$\begin{gathered} 94.6666 \\ 7 \end{gathered}$
21095 A0417	24	70	46	$\begin{gathered} 93.333 \\ 33 \\ \hline \end{gathered}$	$\begin{gathered} 93.3333 \\ 3 \end{gathered}$	$\begin{gathered} 93.3333 \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} 93.3333 \\ 3 \end{gathered}$
21095A0430	24	73	49	$\begin{gathered} 97.333 \\ 33 \\ \hline \end{gathered}$	$\begin{gathered} 97.3333 \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} 97.3333 \\ 3 \end{gathered}$	$\begin{gathered} 97.3333 \\ 3 \end{gathered}$
21095 A0432	23	68	45	$\begin{gathered} 90.666 \\ 67 \end{gathered}$	$\begin{gathered} 90.6666 \\ 7 \end{gathered}$	$\begin{gathered} 90.6666 \\ 7 \end{gathered}$	$\begin{gathered} 90.6666 \\ 7 \end{gathered}$
20091A0401	22	69	47	92	92	92	92
20091A0406	22	70	48	$\begin{gathered} 93.333 \\ 33 \\ \hline \end{gathered}$	$\begin{gathered} 93.3333 \\ 3 \end{gathered}$	$\begin{gathered} 93.3333 \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} 93.3333 \\ 3 \end{gathered}$
20091A0410	22	69	47	92	92	92	92
20091A0411	22	67	45	$\begin{gathered} 89.333 \\ 33 \\ \hline \end{gathered}$	$\begin{gathered} 89.3333 \\ 3 \end{gathered}$	$\begin{gathered} 89.3333 \\ 3 \end{gathered}$	$\begin{gathered} 89.3333 \\ 3 \end{gathered}$
20091A0417	23	71	48	$\begin{gathered} 94.666 \\ 67 \end{gathered}$	$\begin{gathered} 94.6666 \\ 7 \\ \hline \end{gathered}$	$\begin{gathered} 94.6666 \\ 7 \\ \hline \end{gathered}$	$\begin{gathered} 94.6666 \\ 7 \\ \hline \end{gathered}$
20091A0418	22	70	48	$\begin{gathered} 93.333 \\ 33 \\ \hline \end{gathered}$	$\begin{gathered} 93.3333 \\ 3 \end{gathered}$	$\begin{gathered} 93.3333 \\ 3 \end{gathered}$	$\begin{gathered} 93.3333 \\ 3 \\ \hline \end{gathered}$

20091A0426	22	68	46	$\begin{gathered} 90.666 \\ 67 \\ \hline \end{gathered}$	$\begin{gathered} 90.6666 \\ 7 \\ \hline \end{gathered}$	$\begin{gathered} 90.6666 \\ 7 \\ \hline \end{gathered}$	$\begin{gathered} 90.6666 \\ 7 \\ \hline \end{gathered}$
20091A0427	22	68	46	90.666	90.6666	90.6666	90.6666
				67	7	7	7
	22	70	48	93.333	93.3333	93.3333	93.3333
20091A0438				33	3	3	3
	23	71	48	94.666	94.6666	94.6666	94.6666
20091A0443				67	7	7	7
	21	70	49	93.333	93.3333	93.3333	93.3333
20091A0444				33	3	3	3
	22	70	48	93.333	93.3333	93.3333	93.3333
20091A0447				33	3	3	3
	20	67	47	89.333	89.3333	89.3333	89.3333
20091A0449				33	3	3	3
20091A0452	21	69	48	92	92	92	92
20091A0454	21	66	45	88	88	88	88
	20	67	47	89.333	89.3333	89.3333	89.3333
20091A0455				33	3	3	3
	23	71	48	94.666	94.6666	94.6666	94.6666
20091A0456				67	7	7	7
	22	70	48	93.333	93.3333	93.3333	93.3333
20091A0459				33	3	3	3
	17	62	45	82.666	82.6666	82.6666	82.6666
20091A0465				67	7	7	7
20091A0467	19	66	47	88	88	88	88
	21	68	47	90.666	90.6666	90.6666	90.6666
20091A0473				67	7	7	7
	21	67	46	89.333	89.3333	89.3333	89.3333
20091A0476				33	3	3	3
	21	70	49	93.333	93.3333	93.3333	93.3333
20091A0484				33	3	3	3
	23	71	48	94.666	94.6666	94.6666	94.6666
20091A0485				67	7	7	7
20091A0489	21	66	45	88	88	88	88
20091A0494	21	66	45	88	88	88	88
	21	68	47	90.666	90.6666	90.6666	90.6666
20091A0495				67	7	7	7
	20	64	44	85.333	85.3333	85.3333	85.3333
20091A0496				33	3	3	3
	23	71	48	94.666	94.6666	94.6666	94.6666
20091A04A6				67	7	7	7
	20	68	48	90.666	90.6666	90.6666	90.6666
20091A04B0				67	7	7	7
20091A04B5	22	66	44	88	88	88	88
	24	71		94.666	94.6666	94.6666	94.6666
20091A04B6			47	67	7	7	7

20091A04B7	20	68	48	$\begin{gathered} 90.666 \\ 67 \end{gathered}$	$\begin{gathered} 90.6666 \\ 7 \end{gathered}$	$\begin{gathered} 90.6666 \\ 7 \\ \hline \end{gathered}$	$\begin{gathered} 90.6666 \\ 7 \end{gathered}$
				94.666	94.6666	94.6666	94.6666
20091A04B9	23	71	48	67	7	7	7
20091A04C0	22	69	47	92	92	92	92
				90.666	90.6666	90.6666	90.6666
20091A04C3	22	68	46	67	7	7	7
20091A04D1	21	69	48	92	92	92	92
				93.333	93.3333	93.3333	93.3333
20091A04D8	23	70	47	33	3	3	3
				90.666	90.6666	90.6666	90.6666
20091A04F2	21	68	47	67	7	7	7
20091A04F7	21	69	48	92	92	92	92
				89.333	89.3333	89.3333	89.3333
20091A04G6	20	67	47	33	3	3	3
20091A04G8	24	72	48	96	96	96	96
20091A04G9	21	69	48	92	92	92	92
20091A04H3	20	66	46	88	88	88	88
				89.333	89.3333	89.3333	89.3333
20091A04J1	20	67	47	33	3	3	3
20091A04J2	21	69	48	92	92	92	92
20091A04J8	21	66	45	88	88	88	88
				93.333	93.3333	93.3333	93.3333
20091A04K4	22	70	48	33	3	3	3
				94.666	94.6666	94.6666	94.6666
20091A04M1	23	71	48	67	7	7	7
				93.333	93.3333	93.3333	93.3333
20091A04M5	22	70	48	33	3	3	3
20091A04M6	23	69	46	92	92	92	92
20091A04M8	22	69	47	92	92	92	92
				93.333	93.3333	93.3333	93.3333
20091A04NO	22	70	48	33	3	3	3
				90.666	90.6666	90.6666	90.6666
20091A04N3	22	68	46	67	7	7	7
				93.333	93.3333	93.3333	93.3333
20091A04N4	23	70	47	33	3	3	3
				93.333	93.3333	93.3333	93.3333
20091A04N9	22	70	48	33	3	3	3
20091A04P7	22	69	47	92	92	92	92
20091A04P9	23	72	49	96	96	96	96
				94.666	94.6666	94.6666	94.6666
21095A0411	23	71	48	67	7	7	7
				90.666	90.6666	90.6666	90.6666
21095 A0415	20	68	48	67	7	7	7
				94.666	94.6666	94.6666	94.6666
21095A0416	23	71	48	67	7	7	7

21095A0425	23	70	47	$\begin{gathered} 93.333 \\ 33 \end{gathered}$	$\begin{gathered} 93.3333 \\ 3 \end{gathered}$	$\begin{gathered} 93.3333 \\ 3 \end{gathered}$	$\begin{gathered} 93.3333 \\ 3 \end{gathered}$
				89.333	89.3333	89.3333	89.3333
21095 A0427	21	67	46	33	3	3	3
				69.333	69.3333	69.3333	69.3333
19091A0412	22	52	30	33	3	3	3
				90.666	90.6666	90.6666	90.6666
20091A0405	23	68	45	67	7	7	7
				86.666	86.6666	86.6666	86.6666
20091A0407	23	65	42	67	7	7	7
				90.666	90.6666	90.6666	90.6666
20091A0415	24	68	44	67	7	7	7
				89.333	89.3333	89.3333	89.3333
20091A0416	22	67	45	33	3	3	3
20091A0422	23	69	46	92	92	92	92
				90.666	90.6666	90.6666	90.6666
20091A0423	23	68	45	67	7	7	7
				94.666	94.6666	94.6666	94.6666
20091A0424	23	71	48	67	7	7	7
				90.666	90.6666	90.6666	90.6666
20091A0428	23	68	45	67	7	7	7
				90.666	90.6666	90.6666	90.6666
20091A0433	23	68	45	67	7	7	7
20091A0441	23	63	40	84	84	84	84
20091A0442	23	63	40	84	84	84	84
				90.666	90.6666	90.6666	90.6666
20091A0448	24	68	44	67	7	7	7
				89.333	89.3333	89.3333	89.3333
20091A0451	23	67	44	33	3	3	3
				90.666	90.6666	90.6666	90.6666
20091A0453	23	68	45	67	7	7	7
20091A0457	23	69	46	92	92	92	92
				85.333	85.3333	85.3333	85.3333
20091A0458	23	64	41	33	3	3	3
				85.333	85.3333	85.3333	85.3333
20091A0460	23	64	41	33	3	3	3
20091A0462	22	63	41	84	84	84	84
20091A0463	23	66	43	88	88	88	88
				86.666	86.6666	86.6666	86.6666
20091A0492	23	65	42	67	7	7	7
				89.333	89.3333	89.3333	89.3333
20091A04A0	23	67	44	33	3	3	3
				86.666	86.6666	86.6666	86.6666
20091A04A4	23	65	42	67	7	7	7
				90.666	90.6666	90.6666	90.6666
20091A04A5	23	68	45	67	7	7	7

20091A04A7	22	62	40	$\begin{gathered} 82.666 \\ 67 \end{gathered}$	82.6666	$\begin{gathered} 82.6666 \\ 7 \end{gathered}$	82.6666
20091A04A9	22	66	44	88	88	88	88
20091A04B2	20	60	40	80	80	80	80
20091A04B3	20	60	40	80	80	80	80
20091A04B4	20	62	42	$\begin{gathered} 82.666 \\ 67 \end{gathered}$	$\begin{gathered} 82.6666 \\ 7 \end{gathered}$	$\begin{gathered} 82.6666 \\ 7 \end{gathered}$	$\begin{gathered} 82.6666 \\ 7 \end{gathered}$
20091A04B8	22	65	43	$\begin{gathered} 86.666 \\ 67 \\ \hline \end{gathered}$	$\begin{gathered} 86.6666 \\ 7 \\ \hline \end{gathered}$	$\begin{gathered} 86.6666 \\ 7 \\ \hline \end{gathered}$	$\begin{gathered} 86.6666 \\ 7 \\ \hline \end{gathered}$
20091A04C2	22	66	44	88	88	88	88
20091A04C5	22	64	42	$\begin{gathered} 85.333 \\ 33 \end{gathered}$	$\begin{gathered} 85.3333 \\ 3 \end{gathered}$	$\begin{gathered} 85.3333 \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} 85.3333 \\ 3 \end{gathered}$
20091A04D2	24	68	44	$\begin{gathered} 90.666 \\ 67 \end{gathered}$	$\begin{gathered} 90.6666 \\ 7 \end{gathered}$	$\begin{gathered} 90.6666 \\ 7 \end{gathered}$	$\begin{gathered} 90.6666 \\ 7 \end{gathered}$
20091A04D6	23	66	43	88	88	88	88
20091A04E3	22	62	40	$\begin{gathered} \hline 82.666 \\ 67 \\ \hline \end{gathered}$	$\begin{gathered} 82.6666 \\ 7 \\ \hline \end{gathered}$	$\begin{gathered} 82.6666 \\ 7 \\ \hline \end{gathered}$	$\begin{gathered} 82.6666 \\ 7 \\ \hline \end{gathered}$
20091A04G4	24	65	41	$\begin{gathered} 86.666 \\ 67 \end{gathered}$	$\begin{gathered} 86.6666 \\ 7 \end{gathered}$	$\begin{gathered} 86.6666 \\ 7 \\ \hline \end{gathered}$	$\begin{gathered} 86.6666 \\ 7 \\ \hline \end{gathered}$
20091A04G7	23	66	43	88	88	88	88
20091A04H1	22	66	44	88	88	88	88
20091A04H4	23	65	42	$\begin{gathered} 86.666 \\ 67 \\ \hline \end{gathered}$	$\begin{gathered} 86.6666 \\ 7 \\ \hline \end{gathered}$	$\begin{gathered} 86.6666 \\ 7 \\ \hline \end{gathered}$	$\begin{gathered} 86.6666 \\ 7 \\ \hline \end{gathered}$
20091A04H6	23	67	44	$\begin{gathered} 89.333 \\ 33 \end{gathered}$	$\begin{gathered} 89.3333 \\ 3 \end{gathered}$	$\begin{gathered} 89.3333 \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} 89.3333 \\ 3 \\ \hline \end{gathered}$
20091A04J4	23	67	44	$\begin{gathered} 89.333 \\ 33 \end{gathered}$	$\begin{gathered} 89.3333 \\ 3 \end{gathered}$	$\begin{gathered} 89.3333 \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} 89.3333 \\ 3 \end{gathered}$
20091A04J5	23	69	46	92	92	92	92
20091A04J6	23	70	47	$\begin{gathered} 93.333 \\ 33 \\ \hline \end{gathered}$	$\begin{gathered} 93.3333 \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} 93.3333 \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} 93.3333 \\ 3 \\ \hline \end{gathered}$
20091A04J7	23	70	47	$\begin{gathered} 93.333 \\ 33 \\ \hline \end{gathered}$	$\begin{gathered} 93.3333 \\ 3 \end{gathered}$	$\begin{gathered} 93.3333 \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} 93.3333 \\ 3 \\ \hline \end{gathered}$
20091A04N5	23	67	44	$\begin{gathered} 89.333 \\ 33 \end{gathered}$	$\begin{gathered} 89.3333 \\ 3 \end{gathered}$	$\begin{gathered} 89.3333 \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} 89.3333 \\ 3 \end{gathered}$
20091A04P2	22	65	43	$\begin{gathered} 86.666 \\ 67 \\ \hline \end{gathered}$	$\begin{gathered} 86.6666 \\ 7 \\ \hline \end{gathered}$	$\begin{gathered} 86.6666 \\ 7 \\ \hline \end{gathered}$	$\begin{gathered} 86.6666 \\ 7 \\ \hline \end{gathered}$
20091A04P4	23	68	45	$\begin{gathered} 90.666 \\ 67 \\ \hline \end{gathered}$	$\begin{gathered} 90.6666 \\ 7 \end{gathered}$	$\begin{gathered} 90.6666 \\ 7 \end{gathered}$	$\begin{gathered} 90.6666 \\ 7 \end{gathered}$
20091A04Q0	24	73	49	$\begin{gathered} 97.333 \\ 33 \\ \hline \end{gathered}$	$\begin{gathered} 97.3333 \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} 97.3333 \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} 97.3333 \\ 3 \\ \hline \end{gathered}$
21095A0401	24	73	49	$\begin{gathered} 97.333 \\ 33 \\ \hline \end{gathered}$	$\begin{gathered} 97.3333 \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} 97.3333 \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} 97.3333 \\ 3 \\ \hline \end{gathered}$
21095A0402	23	69	46	92	92	92	92
21095A0403	23	72	49	96	96	96	96
21095A0405	23	70	47	$\begin{gathered} 93.333 \\ 33 \end{gathered}$	$\begin{gathered} 93.3333 \\ 3 \end{gathered}$	$\begin{gathered} 93.3333 \\ 3 \end{gathered}$	$\begin{gathered} 93.3333 \\ 3 \end{gathered}$

21095A0406	22	69	47	92	92	92	92
				94.666	94.6666	94.6666	94.6666
21095A0407	23	71	48	67	7	7	7
				93.333	93.3333	93.3333	93.3333
21095A0409	23	70	47	33	3	3	3
				94.666	94.6666	94.6666	94.6666
21095A0418	23	71	48	67	7	7	7
21095A0421	23	72	49	96	96	96	96
				94.666	94.6666	94.6666	94.6666
21095A0422	23	71	48	67	7	7	7
				86.666	86.6666	86.6666	86.6666
21095A0428	22	65	43	67	7	7	7
				94.666	94.6666	94.6666	94.6666
21095A0433	23	71	48	67	7	7	7
19091A04B6	21	54	33	72	72	72	72
				78.666	78.6666	78.6666	78.6666
20091A0403	22	59	37	67	7	7	7
				65.333	65.3333	65.3333	65.3333
20091A0409	18	49	31	33	3	3	3
				73.333	73.3333	73.3333	73.3333
20091A0412	22	55	33	33	3	3	3
				85.333	85.3333	85.3333	85.3333
20091A0413	21	64	43	33	3	3	3
				78.666	78.6666	78.6666	78.6666
20091A0420	17	59	42	67	7	7	7
				73.333	73.3333	73.3333	73.3333
20091A0421	21	55	34	33	3	3	3
				78.666	78.6666	78.6666	78.6666
20091A0425	19	59	40	67	7	7	7
				73.333	73.3333	73.3333	73.3333
20091A0430	21	55	34	33	3	3	3
				74.666	74.6666	74.6666	74.6666
20091A0431	21	56	35	67	7	7	7
				89.333	89.3333	89.3333	89.3333
20091A0432	23	67	44	33	3	3	3
				77.333	77.3333	77.3333	77.3333
20091A0434	18	58	40	33	3	3	3
				69.333	69.3333	69.3333	69.3333
20091A0440	17	52	35	33	3	3	3
				82.666	82.6666	82.6666	82.6666
20091A0446	18	62	44	67	7	7	7
				69.333	69.3333	69.3333	69.3333
20091A0464	18	52	34	33	3	3	3
20091A0468	22	54	32	72	72	72	72
				66.666	66.6666	66.6666	66.6666
20091A0474	19	50	31	67	7	7	7

20091A0477	18	44	26	$\begin{gathered} 58.666 \\ 67 \end{gathered}$	$\begin{gathered} 58.6666 \\ 7 \end{gathered}$	$\begin{gathered} 58.6666 \\ 7 \\ \hline \end{gathered}$	$\begin{gathered} 58.6666 \\ 7 \\ \hline \end{gathered}$
				73.333	73.3333	73.3333	73.3333
20091A0487	21	55	34	33	3	3	3
				70.666	70.6666	70.6666	70.6666
20091A0491	20	53	33	67	7	7	7
				58.666	58.6666	58.6666	58.6666
20091A0499	18	44	26	67	7	7	7
				74.666	74.6666	74.6666	74.6666
20091A04A8	21	56	35	67	7	7	7
				74.666	74.6666	74.6666	74.6666
20091A04B1	18	56	38	67	7	7	7
				66.666	66.6666	66.6666	66.6666
20091A04C7	18	50	32	67	7	7	7
20091A04D0	21	60	39	80	80	80	80
				66.666	66.6666	66.6666	66.6666
20091A04D4	18	50	32	67	7	7	7
20091A04D5	20	48	28	64	64	64	64
				70.666	70.6666	70.6666	70.6666
20091A04E2	19	53	34	67	7	7	7
20091A04E4	22	48	26	64	64	64	64
				73.333	73.3333	73.3333	73.3333
20091A04F4	17	55	38	33	3	3	3
				74.666	74.6666	74.6666	74.6666
20091A04F5	17	56	39	67	7	7	7
				78.666	78.6666	78.6666	78.6666
20091A04F6	21	59	38	67	7	7	7
20091A04H2	19	45	26	60	60	60	60
				41.333	41.3333	41.3333	41.3333
20091A04K0	15	31	16	33	3	3	3
				62.666	62.6666	62.6666	62.6666
20091A04K2	17	47	30	67	7	7	7
				78.666	78.6666	78.6666	78.6666
20091А04K3	17	59	42	67	7	7	7
				66.666	66.6666	66.6666	66.6666
20091A04K7	15	50	35	67	7	7	7
				74.666	74.6666	74.6666	74.6666
20091A04K8	21	56	35	67	7	7	7
				81.333	81.3333	81.3333	81.3333
20091A04M2	21	61	40	33	3	3	3
20091A04N1	23	57	34	76	76	76	76
				61.333	61.3333	61.3333	61.3333
20091A04N2	18	46	28	33	3	3	3
				61.333	61.3333	61.3333	61.3333
20091A04P1	17	46	29	33	3	3	3
20091A04P3	16	42	26	56	56	56	56

20091A04P6	19	51	32	68	68	68	68
				53.333	53.3333	53.3333	53.3333
21095A0408	16	40	24	33	3	3	3
21095A0410	22	57	35	76	76	76	76
				81.333	81.3333	81.3333	81.3333
21095A0413	24	61	37	33	3	3	3
21095A0414	17	51	34	68	68	68	68
				77.333	77.3333	77.3333	77.3333
21095A0419	19	58	39	33	3	3	3
				78.666	78.6666	78.6666	78.6666
21095A0420	20	59	39	67	7	7	7
21095A0423	21	60	39	80	80	80	80
				74.666	74.6666	74.6666	74.6666
21095A0424	22	56	34	67	7	7	7
				77.333	77.3333	77.3333	77.3333
21095A0426	18	58	40	33	3	3	3
				81.333	81.3333	81.3333	81.3333
21095A0429	22	61	39	33	3	3	3
21095A0431	18	54	36	72	72	72	72

CO-PO CALCULATION

	CO 1		CO 2		CO 3		CO 4	
	No. of students Attained	Weightage Points	No. of students Attained	Weightage Points	No. of students Attained	Weightage Points	No. of students Attained	Weightage Points
$>60 \%$	237	3	237	3	237	3	237	
							3	
40% to 60\%	5	2	5	2	5	2	5	
<40\%	0	1	0	1	0	1	0	2
Total No. of students	242						1	
Atainment value		2.98		2.98		2.98		
\% of Attainment		97.93		97.93		97.93		
Attained or not		YES		YES		YES		2.98

CO	CO Attainment Value	PO 1	$\begin{gathered} \text { PO } \\ 2 \end{gathered}$	$\begin{gathered} \text { PO } \\ 3 \end{gathered}$	$\begin{gathered} \text { PO } \\ 4 \end{gathered}$	$\begin{gathered} \text { PO } \\ 5 \end{gathered}$	PO 6	$\begin{gathered} \text { PO } \\ 7 \end{gathered}$	$\begin{gathered} \text { PO } \\ 8 \end{gathered}$	$\begin{gathered} \text { PO } \\ 9 \end{gathered}$	$\begin{gathered} \text { PO } \\ 10 \end{gathered}$	$\begin{aligned} & \text { PO } \\ & 11 \end{aligned}$	PO 12	$\begin{gathered} \text { PSO } \\ 1 \end{gathered}$	$\begin{gathered} \text { PSO } \\ 2 \end{gathered}$	$\begin{gathered} \text { PSO } \\ 3 \end{gathered}$
CO 1	2.98		2	1											1	
CO 2	2.98	3	3	2	1	1				1	2				2	
CO 3	2.98	1	3	3	2	1	1			2	1		2	3	1	
CO 4	2.98		2	2	1	3				2	1	1	2		1	3
CO 5																
CO 6																

DC LAB	2.98	2.98	2.98	2.98	2.98	2.98	-	-	2.98	2.98	2.98	2.98	2.98	2.98	2.98

